Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 17(37): 8589-8600, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31517383

RESUMO

Herein, a cascade [3 + 2] annulation of N-aryloxyacetamides with 3-(hetero)arylpropiolic acids affording benzofuran-2(3H)-ones via rhodium(iii)-catalyzed redox-neutral C-H functionalization/isomerization/lactonization using an internal oxidative directing group O-NHAc was achieved. This catalytic system provides a regio- and stereoselective approach to synthesize (Z)-3-(amino(aryl)methylene)benzofuran-2(3H)-ones with exclusive Z configuration selectivity, acceptable yields and good functional group tolerance. Preliminary investigations on ultraviolet-visible and fluorescence behaviors reveal that the annulation products may be applied as a promising fluorescent probe for sensing metal cations, especially for cerium (Ce3+).

2.
Nat Commun ; 10(1): 3063, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296850

RESUMO

Nonbiaryl N-C atropisomer is an important structural scaffold, which is present in natural products, medicines and chiral ligands. However the direct enantioselective C-H amination to access optically pure N-C atropisomer is still difficult and rare. Here we report a π-π interaction and dual H-bond concerted control strategy to develop the chiral phosphoric acids (CPAs) catalyzed direct intermolecular enantioselective C-H amination of N-aryl-2-naphthylamines with azodicarboxylates as amino sources for the construction of atroposelective naphthalene-1,2-diamines. This type of N-C atropisomers is stabilized by intramolecular hydrogen bond and the method features a broad range of substrates, high yields and ee values, providing a strategy to chirality transfer via the modification of N-C atropisomers.

3.
Org Lett ; 21(8): 2823-2827, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30916570

RESUMO

A cascade [3 + 2] annulation and ring opening of N-aryloxyacetamides with 1-alkynylcyclobutanols via Rh(III)-catalyzed redox-neutral C-H/C-C activations using internal oxidative O-NHAc and -OH as the dual directing groups has been achieved. This reaction provided an efficient and regioselective approach to benzofuran derivatives with good functional group compatibility and high yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA