Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 347: 122627, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614301

RESUMO

A high mortality rate makes hepatocellular carcinoma (HCC) a difficult cancer to treat. When surgery is not possible, liver cancer patients are treated with chemotherapy. However, HCC management and treatment are difficult. Sorafenib, which is a first-line treatment for hepatocellular carcinoma, initially slows disease progression. However, sorafenib resistance limits patient survival. Recent studies have linked HCC to programmed cell death, which has increased researcher interest in therapies targeting cell death. Pyroptosis, which is an inflammatory mode of programmed cell death, may be targeted to treat HCC. Pyroptosis pathways, executors, and effects are examined in this paper. This review summarizes how pyroptosis affects the tumor microenvironment (TME) in HCC, including the role of cytokines such as IL-1ß and IL-18 in regulating immune responses. The use of chemotherapies and their ability to induce cancer cell pyroptosis as alternative treatments and combining them with other drugs to reduce side effects is also discussed. In conclusion, we highlight the potential of inducing pyroptosis to treat HCC and suggest ways to improve patient outcomes. Studies on cancer cell pyroptosis may lead to new HCC treatments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Piroptose , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sorafenibe/uso terapêutico , Sorafenibe/farmacologia
2.
Apoptosis ; 29(5-6): 620-634, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38281282

RESUMO

Maleic acid (MA) induces renal tubular cell dysfunction directed to acute kidney injury (AKI). AKI is an increasing global health burden due to its association with mortality and morbidity. However, targeted therapy for AKI is lacking. Previously, we determined mitochondrial-associated proteins are MA-induced AKI affinity proteins. We hypothesized that mitochondrial dysfunction in tubular epithelial cells plays a critical role in AKI. In vivo and in vitro systems have been used to test this hypothesis. For the in vivo model, C57BL/6 mice were intraperitoneally injected with 400 mg/kg body weight MA. For the in vitro model, HK-2 human proximal tubular epithelial cells were treated with 2 mM or 5 mM MA for 24 h. AKI can be induced by administration of MA. In the mice injected with MA, the levels of blood urea nitrogen (BUN) and creatinine in the sera were significantly increased (p < 0.005). From the pathological analysis, MA-induced AKI aggravated renal tubular injuries, increased kidney injury molecule-1 (KIM-1) expression and caused renal tubular cell apoptosis. At the cellular level, mitochondrial dysfunction was found with increasing mitochondrial reactive oxygen species (ROS) (p < 0.001), uncoupled mitochondrial respiration with decreasing electron transfer system activity (p < 0.001), and decreasing ATP production (p < 0.05). Under transmission electron microscope (TEM) examination, the cristae formation of mitochondria was defective in MA-induced AKI. To unveil the potential target in mitochondria, gene expression analysis revealed a significantly lower level of ATPase6 (p < 0.001). Renal mitochondrial protein levels of ATP subunits 5A1 and 5C1 (p < 0.05) were significantly decreased, as confirmed by protein analysis. Our study demonstrated that dysfunction of mitochondria resulting from altered expression of ATP synthase in renal tubular cells is associated with MA-induced AKI. This finding provides a potential novel target to develop new strategies for better prevention and treatment of MA-induced AKI.


Assuntos
Injúria Renal Aguda , Apoptose , Maleatos , Camundongos Endogâmicos C57BL , Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras , Animais , Humanos , Masculino , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Espécies Reativas de Oxigênio/metabolismo
3.
Biomedicines ; 12(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255253

RESUMO

Indole-3-acetic acid (IAA), a protein-bound uremic toxin resulting from gut microbiota-driven tryptophan metabolism, increases in hemodialysis (HD) patients. IAA may induce endothelial dysfunction, inflammation, and oxidative stress, elevating cardiovascular and cognitive risk in HD patients. However, research on the microbiome-IAA association is limited. This study aimed to explore the gut microbiome's relationship with plasma IAA levels in 72 chronic HD patients aged over 18 (August 2016-January 2017). IAA levels were measured using tandem mass spectrometry, and gut microbiome analysis utilized 16s rRNA next-generation sequencing. Linear discriminative analysis effect size and random forest analysis distinguished microbial species linked to IAA levels. Patients with higher IAA levels had reduced microbial diversity. Six microbial species significantly associated with IAA levels were identified; Bacteroides clarus, Bacteroides coprocola, Bacteroides massiliensi, and Alisteps shahii were enriched in low-IAA individuals, while Bacteroides thetaiotaomicron and Fusobacterium varium were enriched in high-IAA individuals. This study sheds light on specific gut microbiota species influencing IAA levels, enhancing our understanding of the intricate interactions between the gut microbiota and IAA metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA