Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 137: 112414, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897132

RESUMO

BACKGROUND: Chronic stress-induced neuroinflammation plays a pivotal role in the development and exacerbation of mental disorders, such as anxiety and depression. Dimethyl Fumarate (DMF), an effective therapeutic agent approved for the treatment of multiple sclerosis, has been widely reported to display anti-inflammatory and anti-oxidative effects. However, the impact of DMF on chronic stress-induced anxiety disorders and the exact underlying mechanisms remain largely unknown. METHODS: We established a mouse model of chronic social defeat stress (CSDS). DMF was administered orally 1 h before daily stress session for 10 days in CSDS + DMF group. qRT-PCR and western blotting were used to analyze mRNA and protein expression of NLRP3, Caspase-1 and IL-1ß. Immunofluorescence staining was carried out to detect the expression of Iba 1 and c-fos positive cells as well as morphological change of Iba 1+ microglia. Whole-cell patch-clamp recording was applied to evaluate synaptic transmission and intrinsic excitability of neurons. RESULTS: DMF treatment significantly alleviated CSDS-induced anxiety-like behaviors in mice. Mechanistically, DMF treatment prevented CSDS-induced neuroinflammation by inhibiting the activation of microglia and NLRP3/Caspase-1/IL-1ß signaling pathway in basolateral amygdala (BLA), a brain region important for emotional processing. Furthermore, DMF treatment effectively reversed the CSDS-caused disruption of excitatory and inhibitory synaptic transmission balance, as well as the increased intrinsic excitability of BLA neurons. CONCLUSIONS: Our findings provide new evidence that DMF may exert anxiolytic effect by preventing CSDS-induced activation of NLRP3/Caspase-1/IL-1ß signaling pathway and alleviating hyperactivity of BLA neurons.

2.
Cell Biosci ; 13(1): 90, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37208769

RESUMO

BACKGROUND: Chronic stress exposure increases the risk of mental health problems such as anxiety and depression. The medial prefrontal cortex (mPFC) is a hub for controlling stress responses through communicating with multiple limbic structures, including the basolateral amygdala (BLA) and nucleus accumbens (NAc). However, considering the complex topographical organization of the mPFC neurons in different subregions (dmPFC vs. vmPFC) and across multiple layers (Layer II/III vs. Layer V), the exact effects of chronic stress on these distinct mPFC output neurons remain largely unknown. RESULTS: We first characterized the topographical organization of mPFC neurons projecting to BLA and NAc. Then, by using a typical mouse model of chronic restraint stress (CRS), we investigated the effects of chronic stress on the synaptic activity and intrinsic properties of the two mPFC neuronal populations. Our results showed that there was limited collateralization of the BLA- and NAc-projecting pyramidal neurons, regardless of the subregion or layer they were situated in. CRS significantly reduced the inhibitory synaptic transmission onto the BLA-projecting neurons in dmPFC layer V without any effect on the excitatory synaptic transmission, thus leading to a shift of the excitation-inhibition (E-I) balance toward excitation. However, CRS did not affect the E-I balance in NAc-projecting neurons in any subregions or layers of mPFC. Moreover, CRS also preferentially increased the intrinsic excitability of the BLA-projecting neurons in dmPFC layer V. By contrast, it even caused a decreasing tendency in the excitability of NAc-projecting neurons in vmPFC layer II/III. CONCLUSION: Our findings indicate that chronic stress exposure preferentially modulates the activity of the mPFC-BLA circuit in a subregion (dmPFC) and laminar (layer V) -dependent manner.

3.
Neuropsychopharmacology ; 48(5): 734-744, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36513871

RESUMO

Anxiety is a normal and transitory emotional state that allows the organisms to cope well with the real or perceived threats, while excessive or prolonged anxiety is a key characteristic of anxiety disorders. We have recently revealed that prolonged anxiety induced by chronic stress is associated with the circuit-varying dysfunction of basolateral amygdala projection neurons (BLA PNs). However, it is not yet known whether similar mechanisms also emerge for acute stress-induced, short-lasting increase of anxiety. Here, using a mouse model of acute restraint stress (ARS), we found that ARS mice showed increased anxiety-like behavior at 2 h but not 24 h after stress, and this effect was accompanied by a transient increase of the activity of BLA PNs. Specifically, ex vivo patch-clamp recordings revealed that the increased BLA neuronal activity did not differ among the distinct BLA neuronal populations, regardless of their projection targets being the dorsomedial prefrontal cortex (dmPFC) or elsewhere. We further demonstrated that such effects were mainly mediated by the enhanced presynaptic glutamate release in dmPFC-to-BLA synapses but not lateral amygdala-to-BLA ones. Furthermore, while optogenetically weakening the presynaptic glutamate release in dmPFC-to-BLA synapses ameliorated ARS-induced anxiety-like behavior, strengthening the release increased in unstressed mice. Together, these findings suggest that acute stress causes short-lasting increase in anxiety-like behavior by facilitating synaptic transmission from the prefrontal cortex to the amygdala in a circuit-independent fashion.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Humanos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Córtex Pré-Frontal/fisiologia , Ansiedade/etiologia , Transtornos de Ansiedade , Glutamatos
4.
Neurosci Bull ; 38(1): 16-28, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34494228

RESUMO

Chronic stress leads to many psychiatric disorders, including social and anxiety disorders that are associated with over-activation of neurons in the basolateral amygdala (BLA). However, not all individuals develop psychiatric diseases, many showing considerable resilience against stress exposure. Whether BLA neuronal activity is involved in regulating an individual's vulnerability to stress remains elusive. In this study, using a mouse model of chronic social defeat stress (CSDS), we divided the mice into susceptible and resilient subgroups based on their social interaction behavior. Using in vivo fiber photometry and in vitro patch-clamp recording, we showed that CSDS persistently (after 20 days of recovery from stress) increased BLA neuronal activity in all the mice regardless of their susceptible or resilient nature, although impaired social interaction behavior was only observed in susceptible mice. Increased anxiety-like behavior, on the other hand, was evident in both groups. Notably, the CSDS-induced increase of BLA neuronal activity correlated well with the heightened anxiety-like but not the social avoidance behavior in mice. These findings provide new insight to our understanding of the role of neuronal activity in the amygdala in mediating stress-related psychiatric disorders.


Assuntos
Aprendizagem da Esquiva , Estresse Psicológico , Tonsila do Cerebelo , Animais , Ansiedade/etiologia , Transtornos de Ansiedade , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Social , Estresse Psicológico/complicações
5.
Brain Behav Immun ; 91: 505-518, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161163

RESUMO

Increasing evidence indicates that excessive inflammatory responses play a crucial role in the pathophysiology of psychiatric diseases, including depression and anxiety disorders. The dysfunctional neural plasticity in amygdala has long been proposed as the vital cause for the progression of psychiatric disorders. However, the effect of neuroinflammation on the functional changes of the amygdala remains largely unknown. Here, by using a mouse model of inflammation induced by lipopolysaccharide (LPS) injection, we investigated the effect of LPS-induced neuroinflammation on the synaptic and non-synaptic plasticity in basolateral amygdala (BLA) projection neurons (PNs) and their contribution to the LPS-induced anxiety- and depressive-like behavior. The results showed that LPS treatment led to the activation of microglia and production of proinflammatory cytokines in the BLA. Furthermore, LPS treatment increased excitatory but not inhibitory synaptic transmission due to the enhanced presynaptic glutamate release, thus leading to the shift of excitatory/inhibitory balance towards excitatory. In addition, the intrinsic neuronal excitability of BLA PNs was also increased by LPS treatment through the loss of expression and function of small-conductance, calcium-activated potassium channel. Chronic fluoxetine pretreatment significantly prevented these neurophysiological changes induced by LPS, and alleviated anxiety and depressive-like behavior, indicating that LPS-induced neuronal dysregulation of BLA PNs may contribute to the development of psychiatry disorders. Collectively, these findings provide evidence that dysregulation of synaptic and non-synaptic transmission in the BLA PNs may account for neuroinflammation-induced anxiety- and depressive-like behavior.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo , Ansiedade , Transtornos de Ansiedade , Humanos , Plasticidade Neuronal
6.
Front Neurosci ; 14: 299, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362809

RESUMO

Chronic or prolonged exposure to stress ranks among the most important socioenvironmental factors contributing to the development of neuropsychiatric diseases, a process generally associated with loss of inhibitory tone in amygdala. Recent studies have identified distinct neuronal circuits within the basolateral amygdala (BLA) engaged in different emotional processes. However, the potential circuit involved in stress-induced dysregulation of inhibitory tones in BLA remains elusive. Here, a transgenic mouse model expressing yellow fluorescent protein under control of the Thy1 promoter was used to differentiate subpopulations of projection neurons (PNs) within the BLA. We observed that the tonic inhibition in amygdala neurons expressing and not expressing Thy1 (Thy1+/-) was oppositely regulated by chronic social defeat stress (CSDS). In unstressed control mice, the tonic inhibitory currents were significantly stronger in Thy1- PNs than their Thy1+ counterparts. CSDS markedly reduced the currents in Thy1- projection neurons (PNs), but increased that in Thy1+ ones. By contrast, CSDS failed to affect both the phasic A-type γ-aminobutyric acid receptor (GABAAR) currents and GABABR currents in these two PN populations. Moreover, chronic corticosterone administration was sufficient to mimic the effect of CSDS on the tonic inhibition of Thy1+ and Thy1- PNs. As a consequence, the suppression of tonic GABAAR currents on the excitability of Thy1- PNs was weakened by CSDS, but enhanced in Thy1+ PNs. The differential regulation of chronic stress on the tonic inhibition in Thy1+ and Thy1- neurons may orchestrate cell-specific adaptation of amygdala neurons to chronic stress.

7.
Nat Commun ; 11(1): 2221, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376858

RESUMO

Dysregulated prefrontal control over amygdala is engaged in the pathogenesis of psychiatric diseases including depression and anxiety disorders. Here we show that, in a rodent anxiety model induced by chronic restraint stress (CRS), the dysregulation occurs in basolateral amygdala projection neurons receiving mono-directional inputs from dorsomedial prefrontal cortex (dmPFC→BLA PNs) rather than those reciprocally connected with dmPFC (dmPFC↔BLA PNs). Specifically, CRS shifts the dmPFC-driven excitatory-inhibitory balance towards excitation in the former, but not latter population. Such specificity is preferential to connections made by dmPFC, caused by enhanced presynaptic glutamate release, and highly correlated with the increased anxiety-like behavior in stressed mice. Importantly, low-frequency optogenetic stimulation of dmPFC afferents in BLA normalizes the enhanced prefrontal glutamate release onto dmPFC→BLA PNs and lastingly attenuates CRS-induced increase of anxiety-like behavior. Our findings thus reveal a target cell-based dysregulation of mPFC-to-amygdala transmission for stress-induced anxiety.


Assuntos
Tonsila do Cerebelo/fisiologia , Ansiedade/fisiopatologia , Ácido Glutâmico/metabolismo , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Estresse Psicológico , Animais , Ansiedade/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Corticosterona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética , Restrição Física
8.
Sheng Li Xue Bao ; 72(2): 235-242, 2020 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-32328617

RESUMO

Gliomas are malignant tumors with strong invasiveness. The current treatment strategy is surgical treatment assisted by a variety of radiotherapies, chemotherapies and immunotherapies. However, the curative efficacy is limited. Adrenergic receptor (AR) is an important stress hormone receptor, which is highly involved in the regulation of the tumorigenesis and progression of various tumors by activating different downstream signal transduction pathways. Recent studies have shown that AR is dysregulated in glioma cells and tissues, and plays an important role in a series of biological behaviors such as tumorigenesis, invasion and metastasis of glioma. This article reviews the research progress of AR in the field of glioma in recent years, which provides a theoretical basis for the prevention and treatment of glioma targeting the AR.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Receptores Adrenérgicos/fisiologia , Transdução de Sinais , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Metástase Neoplásica
9.
Neuroreport ; 30(11): 753-759, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31261237

RESUMO

The δ subunit-containing GABAA receptor [GABAA(δ)R], which is exclusively situated in the extrasynaptic space, has considerable influence on emotion and behavior. Although the expression of this receptor experiences dramatic fluctuation during postnatal development, it remains unknown whether it regulates emotion in a development-dependent manner. Here, by using mice with genetic deletion of GABAA(δ)R (knockout) and their wild-type littermates, we examined the role of GABAA(δ)R in regulating anxiety-like behavior, as measured with open field test (OFT) and elevated plus maze during the transition from puberty to adulthood. We observed that for female mice, the knockout ones at puberty but not adulthood showed increased anxiety-like behavior in the OFT relative to their wild-type littermates. However, such increase was not observed in elevated plus maze. For male mice, no between-genotype differences were observed in both tests at the above two developmental stages. Our results suggest that GABAA(δ)R preferentially affects the anxiety-like behavior in OFT in a development-dependent manner, but only in female mice.


Assuntos
Ansiedade/fisiopatologia , Receptores de GABA-A/fisiologia , Caracteres Sexuais , Fatores Etários , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de GABA-A/genética
10.
Biol Psychiatry ; 85(10): 812-828, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737013

RESUMO

BACKGROUND: The role of the amygdala in mediating stress coping has been long appreciated. However, basolateral amygdala (BLA) projection neurons (PNs) are organized into discrete output circuits, and it remains unclear whether stress differentially impacts these circuits. METHODS: Mice were exposed to acute restraint stress or chronic restraint stress (CRS), and c-fos expression was measured as a proxy for neuronal activation in Retrobead retrogradely labeled dorsomedial prefrontal cortex-targeting PNs (BLA→dmPFC) and non-dmPFC-targeting PNs (BLA↛dmPFC). Next, the effects of CRS on neuronal firing and membrane potassium channel current were examined via ex vivo electrophysiology in these neuronal populations and correlated with anxiety-like behavior, as measured in the elevated plus maze and novel open field tests. Lastly, the ability of virus-mediated overexpression of subtype 2 of small-conductance, calcium-activated potassium (SK2) channel in BLA↛dmPFC PNs to negate the anxiety-related effects of CRS was assessed. RESULTS: BLA→dmPFC PNs were transiently activated after CRS, whereas BLA↛dmPFC showed sustained c-fos expression and augmented firing to external input. CRS led to a loss of SK2 channel-mediated currents in BLA↛dmPFC PNs, which correlated with heightened anxiety-like behavior. Virus-mediated maintenance of SK2 channel currents in BLA↛dmPFC PNs prevented CRS-induced anxiety-like behavior. Finally, CRS produced persistent activation of BLA PNs targeting the ventral hippocampus, and virally overexpressing SK2 channels in this projection population were sufficient to prevent CRS-induced anxiety-like behavior. CONCLUSIONS: The current data reveal that chronic stress produces projection-specific functional adaptations in BLA PNs. These findings offer new insight into the neural circuits that contribute to stress-induced psychopathology.


Assuntos
Ansiedade/fisiopatologia , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiopatologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Ansiedade/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Regulação para Baixo , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Restrição Física , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
11.
Brain Res Bull ; 137: 294-300, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29330035

RESUMO

Emerging evidence indicates that loss of inhibitory tone in amygdala with its subsequent overactivation contributes to the development of multiple mental disorders such as anxiety disorders and post-traumatic stress disorder (PTSD). Harmine is a member of natural ß-carboline alkaloids which can readily cross the blood brain barrier and displays significant antidepressant and anxiolytic effects in rodents. However, the underlying neurobiological mechanisms are largely unknown. Here, by using whole-cell patch clamp recordings in in vitro amygdala slices, we examined the effect of harmine on glutamatergic and GABAergic transmission onto basal amygdala (BA) projection neurons (PNs). Our results showed that harmine affected neither the amplitude nor the frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs/mEPSCs) of PNs. By contrast, it markedly increased both the amplitude and frequency of the spontaneous inhibitory postsynaptic currents (sIPSCs). For mIPSCs, only an increase of their frequency but not amplitude was observed following harmine perfusion, suggesting that harmine might act through presynaptic mechanism. In parallel, a reduction of paired-pulse ratio of evoked IPSCs emerged in the presence of harmine. Furthermore, the intrinsic excitability of PNs was dramatically decreased upon harmine treatment. Together, our study suggests that harmine selectively potentiates the inhibitory but not excitatory transmission onto BA PNs, which may contribute to its antidepressant and anxiolytic influence.


Assuntos
Ansiolíticos/farmacologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Harmina/farmacologia , Células Piramidais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Células Piramidais/metabolismo , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
12.
Learn Mem ; 24(8): 381-384, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28716958

RESUMO

The role of δ subunit-containing GABAA receptor (GABAA(δ)R) in fear generalization is uncertain. Here, by using mice with or without genetic deletion of GABAA(δ)R and using protocols in which the conditioned tone stimuli were cross presented with different nonconditioned stimuli, we observed that when the two tone stimuli were largely similar, both genotypes froze similarly to either of them. However, when they differed markedly, the knockout mice froze much more than their wild-type littermates to the nonconditioned but not conditioned stimuli. Thus, GABAA(δ)R may prevent inappropriate fear generalization when the incoming stimuli differ clearly from the learned threat.


Assuntos
Medo/fisiologia , Generalização Psicológica/fisiologia , Receptores de GABA-A/metabolismo , Estimulação Acústica , Animais , Ansiedade/metabolismo , Percepção Auditiva/fisiologia , Comportamento Exploratório/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Testes Neuropsicológicos , Receptores de GABA-A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA