Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Food Chem ; 458: 140292, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959794

RESUMO

Curcumin, a bioactive compound, showed versatile in anti-inflammatory and anti-cancer ability, while their biological fate in elderly is unclear. In this study, curcumin-loaded nanoparticles based on octyl succinate hydrate (OSA) starch and sodium caseinate were prepared and the in vitro elderly digestion and absorption fate was investigated. The loading capacity of curcumin-loaded nanoparticles prepared from OSA starch (HI), sodium caseinate (SC) and OSA starch­sodium caseinate (HS) were all higher than 15%. Curcumin release behavior of the three nanoparticles during in vitro digestion conformed to first-order kinetics. Meanwhile, the transport efficiency of curcumin for HI, SC, and HS increased significantly than the free curcumin (near 1-fold), and the permeability were 1.9, 2.0, and 2.0 times, respectively. The gene expressions of TNF-α, SREBP2 and NPC1L1 in the organoids were enhanced than control group. This study provided scientific reference and guidance for encapsulation of curcumin and digestion and absorption properties in elderly.

2.
Food Chem ; 456: 140056, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38878546

RESUMO

In this study, carrageenan (CG), xanthan gum (XG) and locust bean gum (LBG), which can be used in infant formulas in China national standards, were selected to prepare LF-polysaccharide complexes to improve the stability of lactoferrin. The results showed that LF interacted more strongly with polysaccharides and did not affect the LF structure to a large extent when the pH and protein/polysaccharide mass ratio were 7 and 10:1 for LF-CG, 8 and 5:1 for LF-XG, 7 and 15:1 for LF-LBG. The zeta potential and fluorescence intensity of the LF-polysaccharide complexes displayed a decreasing trend with the increase in pH. When pH < 6, LF-CG and LF-XG exhibited precipitation and increased UV absorbance. Complexation between LF and CG/XG mainly attributed to electrostatic interactions, while LF and LBG form complexes based on hydrogen bonding or hydrophobic interactions. This study could provide a reference for the practical application of LF in infant formula.


Assuntos
Fórmulas Infantis , Lactoferrina , Polissacarídeos , Lactoferrina/química , Concentração de Íons de Hidrogênio , Polissacarídeos/química , Fórmulas Infantis/química , Galactanos/química , Polissacarídeos Bacterianos/química , Gomas Vegetais/química , Mananas/química , Humanos , Carragenina/química
3.
Microsyst Nanoeng ; 10: 89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919161

RESUMO

With the increasing demand for multifunctional optoelectronic devices, flexible electrochromic energy storage devices are being widely recognized as promising platforms for diverse applications. However, simultaneously achieving high capacitance, fast color switching and large optical modulation range is very challenging. In this study, the MXene-based flexible in-plane microsupercapacitor was fabricated via a mask-assisted spray coating approach. By adding electrochromic ethyl viologen dibromide (EVB) into the electrolyte, the device showed a reversible color change during the charge/discharge process. Due to the high electronic conductivity of the MXene flakes and the fast response kinetics of EVB, the device exhibited a fast coloration/bleaching time of 2.6 s/2.5 s, a large optical contrast of 60%, and exceptional coloration efficiency. In addition, EVB acted as a redox additive to reinforce the energy storage performance; as a result, the working voltage window of the Ti3C2-based symmetric aqueous microsupercapacitor was extended to 1 V. Moreover, the device had a high areal capacitance of 12.5 mF cm-2 with superior flexibility and mechanical stability and showed almost 100% capacitance retention after 100 bending cycles. The as-prepared device has significant potential for a wide range of applications in flexible and wearable electronics, particularly in the fields of camouflage, anticounterfeiting, and displays.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38824049

RESUMO

OBJECTIVES: The study was designed to identify the potential peripheral processes of circulating exosome in response to Tai Chi (TC) exercise and the possibility of its loaded cargos in mediating the effects of TC training on cognitive function among older adults with amnestic mild cognitive impairment (aMCI). DESIGN, SETTING, AND PARTICIPANTS: This was a multicenter randomized controlled trial. One hundred community-dwelling old adults with aMCI were randomly assigned (1:1) to experimental (n = 50) and control groups (n = 50). INTERVENTION: The experimental group participated in TC exercise 5 times/week, with each session lasting 60 minutes for 12 weeks. Both experimental and control groups received health education every 4 weeks. MEASUREMENTS: The primary outcome was global cognitive function. Neurocognitive assessments, MRI examination, and large-scale proteomics analysis of peripheric exosome were conducted at baseline and after 12-week training. Outcome assessors and statisticians were blinded to group allocation. RESULTS: A total of 96 participants (96%) completed all outcome measurements. TC training improved global cognitive function (adjusted mean difference [MD] = 1.9, 95%CI 0.93-2.87, p <0.001) and memory (adjusted MD = 6.42, 95%CI 2.09-10.74, p = 0.004), increased right hippocampus volume (adjusted MD = 88.52, 95%CI 13.63-163.4, p = 0.021), and enhanced rest state functional connectivity (rsFC) between hippocampus and cuneus, which mediated the group effect on global cognitive function (bootstrapping CIs: [0.0208, 1.2826], [0.0689, 1.2211]) and verbal delay recall (bootstrapping CI: [0.0002, 0.6277]). Simultaneously, 24 differentially expressed exosomal proteins were detected in tandem mass tag-labelling proteomic analysis. Of which, the candidate protein low-density lipoprotein receptor-related protein 1 (LRP1) was further confirmed by parallel reaction monitoring and ELISA. Moreover, the up-regulated LRP1 was both positively associated with verbal delay recall and rsFC (left hippocampus-right cuneus). CONCLUSION: TC promotes LRP1 release via exosome, which was associated with enhanced memory function and hippocampus plasticity in aMCI patients. Our findings provided an insight into potential therapeutic neurobiological targets focusing on peripheric exosome in respond to TC exercise.

5.
J Stroke Cerebrovasc Dis ; 33(8): 107788, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878393

RESUMO

BACKGROUND: Electroacupuncture (EA) could represent a clinically effective treatment strategy for patients with vascular cognitive impairment no dementia (VCIND). This randomized trial aims to explore the underlying mechanism of EA in VCIND patients through cognitive function assessment and neuroimaging assessment. METHODS: 140 eligible patients with VCIND were recruited and randomly divided into EA group (n = 70) and Control group (n = 70). The Montreal Cognitive Assessment (MoCA), and the Auditory Verbal Learning Test (AVLT), the Stroop color-naming task (STROOP), and the resting-state functional magnetic resonance imaging assessment. The EA group received treatment for 30 min/day, 5 times/week, for 8 weeks. RESULTS: EA intervention could increase the MoCA score and improve the neutral and consistency response of the STROOP test in VCIND patients (P < 0.05). fMRI functional connectivity analysis showed that, after EA, the default mode network (DMN) function of the posterior cingulate gyrus, left middle frontal gyrus, left anterior cingulate gyrus, left and right superior temporal gyrus, right insula, left precentral gyrus and other brain regions were significantly higher than that in the control group. The functional connectivity between the posterior cingulate gyrus-left middle frontal gyrus and the posterior cingulate gyrus-right superior temporal gyrus was positively correlated with cognitive function (P < 0.05). Gray Matter Volume increased in VCIND after EA(P < 0.05). CONCLUSIONS: EA can increase the functional connectivity between posterior cingulate gyrus-other gyri in VCIND patients. The functional connectivity is positively correlated with cognitive function.


Assuntos
Cognição , Disfunção Cognitiva , Eletroacupuntura , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Resultado do Tratamento , Disfunção Cognitiva/terapia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico , Fatores de Tempo , Testes de Estado Mental e Demência , Rede de Modo Padrão/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Teste de Stroop , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem
6.
mBio ; 15(6): e0067924, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38752726

RESUMO

Phages and bacteria have a long history of co-evolution. However, these dynamics of phage-host interactions are still largely unknown; identification of phage inhibitors that remodel host metabolism will provide valuable information for target development for antimicrobials. Here, we perform a comprehensive screen for early-gene products of ΦNM1 that inhibit cell growth in Staphylococcus aureus. A small membrane protein, Gp11, with inhibitory effects on S. aureus cell division was identified. A bacterial two-hybrid library containing 345 essential S. aureus genes was constructed to screen for targets of Gp11, and Gp11 was found to interact with MurG and DivIC. Defects in cell growth and division caused by Gp11 were dependent on MurG and DivIC, which was further confirmed using CRISPRi hypersensitivity assay. Gp11 interacts with MurG, the protein essential for cell wall formation, by inhibiting the production of lipid II to regulate peptidoglycan (PG) biosynthesis on the cell membrane. Gp11 also interacts with cell division protein DivIC, an essential part of the division machinery necessary for septal cell wall assembly, to disrupt the recruitment of division protein FtsW. Mutations in Gp11 result in loss of its ability to cause growth defects, whereas infection with phage in which the gp11 gene has been deleted showed a significant increase in lipid II production in S. aureus. Together, our findings reveal that a phage early-gene product interacts with essential host proteins to disrupt PG biosynthesis and block S. aureus cell division, suggesting a potential pathway for the development of therapeutic approaches to treat pathogenic bacterial infections. IMPORTANCE: Understanding the interplay between phages and their hosts is important for the development of novel therapies against pathogenic bacteria. Although phages have been used to control methicillin-resistant Staphylococcus aureus infections, our knowledge related to the processes in the early stages of phage infection is still limited. Owing to the fact that most of the phage early proteins have been classified as hypothetical proteins with uncertain functions, we screened phage early-gene products that inhibit cell growth in S. aureus, and one protein, Gp11, selectively targets essential host genes to block the synthesis of the peptidoglycan component lipid II, ultimately leading to cell growth arrest in S. aureus. Our study provides a novel insight into the strategy by which Gp11 blocks essential host cellular metabolism to influence phage-host interaction. Importantly, dissecting the interactions between phages and host cells will contribute to the development of new and effective therapies to treat bacterial infections.


Assuntos
Divisão Celular , Peptidoglicano , Fagos de Staphylococcus , Staphylococcus aureus , Proteínas Virais , Staphylococcus aureus/virologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Peptidoglicano/metabolismo , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Parede Celular/virologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
7.
CNS Neurosci Ther ; 30(5): e14743, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780008

RESUMO

AIMS: Nerve growth factor (NGF) loss is a potential factor for the degeneration of basal forebrain cholinergic neurons (BFCNs) in Alzheimer's disease (AD), and Rab5a is a key regulatory molecule of NGF signaling transduction. Here, we investigated the changes of Rab5a in 5 × FAD mice and further explored the mechanism of Electroacupuncture (EA) treatment in improving cognition in the early stage of AD. METHODS: The total Rab5a and Rab5a-GTP in 5-month-old 5 × FAD mice and wild-type mice were detected using WB and IP technologies. 5 × FAD mice were treated with EA at the Bai hui (DU20) and Shen ting (DU24) acupoints for 4 weeks and CRE/LOXP technology was used to confirm the role of Rab5a in AD mediated by EA stimulation. The Novel Object Recognition and Morris water maze tests were used to evaluate the cognitive function of 5 × FAD mice. The Nissl, immunohistochemistry, and Thioflavin S staining were used to observe pathological morphological changes in the basal forebrain circuit. The Golgi staining was used to investigate the synaptic plasticity of the basal forebrain circuit and WB technology was used to detect the expression levels of cholinergic-related and NGF signal-related proteins. RESULTS: The total Rab5a was unaltered, but Rab5a-GTP increased and the rab5a-positive early endosomes appeared enlarged in the hippocampus of 5 × FAD mice. Notably, EA reduced Rab5a-GTP in the hippocampus in the early stage of 5 × FAD mice. EA could improve object recognition memory and spatial learning memory by reducing Rab5a activity in the early stage of 5 × FAD mice. Moreover, EA could reduce Rab5a activity to increase NGF transduction and increase the levels of phosphorylated TrkA, AKT, and ERK in the basal forebrain and hippocampus, and increase the expression of cholinergic-related proteins, such as ChAT, vAchT, ChT1, m1AchR, and m2AchR in the basal forebrain and ChAT, m1AchR, and m2AchR in the hippocampus, improving synaptic plasticity in the basal forebrain hippocampal circuit in the early stage of 5 × FAD mice. CONCLUSIONS: Rab5a hyperactivation is an early pathological manifestation of 5 × FAD mice. EA could suppress Rab5a-GTP to promote the transduction of NGF signaling, and enhance the synaptic plasticity of the basal forebrain hippocampal circuit improving cognitive impairment in the early stage of 5 × FAD mice.


Assuntos
Doença de Alzheimer , Eletroacupuntura , Fator de Crescimento Neural , Transdução de Sinais , Proteínas rab5 de Ligação ao GTP , Animais , Masculino , Camundongos , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Aprendizagem/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Crescimento Neural/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas rab5 de Ligação ao GTP/metabolismo , Transdução de Sinais/fisiologia
8.
Colloids Surf B Biointerfaces ; 239: 113882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593511

RESUMO

Bacterial infections threaten public health, and novel therapeutic strategies critically demand to be explored. Herein, poly(amino acid) (PAA)-based drug delivery nanoparticles (NPs) were designed for eliminating Methicillin resistant Staphylococcus aureus (MRSA) via tunable release of antibiotic. Using N-acryloyl amino acids (valine, valine methyl ester, aspartic acid, serine) as monomers, four kinds of amphiphilic PAAs were synthesized via photoinduced electron/energy transfer-reversible addition fragmentation chain-transfer (PET-RAFT) polymerization and were further assembled into nano-sized delivery systems. Their assemble behavior was drove mainly by hydrophobic/hydrophilic interaction, which determined the particle size, efficacy of drug loading and release; but numerous hydrogen bonding (HB) interaction also played an important role in regulating morphologies of the NPs and enriching drug-binding capacity. By changing the HB- and hydrophobic-interaction of the PAAs, the particle sizes (240.7 nm-302.7 nm), the drug loading efficiency (9.57%-19.76%), and the Rifampicin (Rif) release rate (49.6%-69.7%) of the PAA-based NPs could be tunable. Specially, the antimicrobial properties of the Rif-loaded NPs are found to be related to the release of Rif, which was determined by its hydrophobic interaction with hydrophobic blocks and HB interaction with hydrophilic blocks. These studies provide a new outlook for the design of delivery systems for the therapy of bacterial infection.


Assuntos
Aminoácidos , Antibacterianos , Liberação Controlada de Fármacos , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Tamanho da Partícula , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Aminoácidos/química , Testes de Sensibilidade Microbiana , Sistemas de Liberação de Medicamentos , Rifampina/farmacologia , Rifampina/química , Polímeros/química , Polímeros/farmacologia , Interações Hidrofóbicas e Hidrofílicas
9.
Food Funct ; 15(10): 5382-5396, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38639045

RESUMO

Controlling the structure and viscosity of food can influence the development of diet-related diseases. Food viscosity has been linked with health through its impact on human digestion and gastrointestinal transit, however, there is limited understanding of how the viscosity of food regulates gastric emptying. Here, we used model food preparations with different viscosities using guar gum, to explore the mechanism underlying the influence of viscosity on gastric motility, gastric emptying and postprandial blood glucose. Based on experiments in human volunteers and animals, we demonstrated that high viscosity meals increased gastric antrum area and gastric retention rate. Viscosity also affected gut hormone secretion, reduced the gene expression level of interstitial cells of Cajal, resulting in a delay of gastric emptying and limiting the increase in postprandial glucose. This improved mechanistic understanding of food viscosity during gastric digestion is important for designing new foods to benefit human health.


Assuntos
Galactanos , Esvaziamento Gástrico , Mananas , Gomas Vegetais , Humanos , Viscosidade , Mananas/química , Mananas/farmacologia , Gomas Vegetais/química , Galactanos/química , Galactanos/farmacologia , Animais , Masculino , Período Pós-Prandial , Adulto , Glicemia/metabolismo , Feminino , Alimentos , Camundongos , Digestão
10.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481101

RESUMO

Pectic oligosaccharides have become novel bioactive components. However, the comprehensive preparation methods, structural features, bioactivities and application of them lack a systematic review. Here, we focused on the enzymatic preparation of pectic oligosaccharides, and attempted to outline relationships among the enzymolysis condition, structure, bioactivities and application of pectic oligosaccharides. Pectic oligosaccharides were characterized by the oligosaccharides with units of →4)-α-GalpA-(1→4)-α-GalpA-(1→ or →4)-α-GalpA-(1→2)-α-Rhap-(1→. Enzymatic method was the most suitable approach for pectic oligosaccharides preparation that was significantly affected by the enzyme's type, time and concentration. Besides, pectic oligosaccharides possessed various bioactivities including prebiotic, anti-glycosylation, antioxidant, anticancer and lipid metabolism-regulation activities, which were closely associated with the molecular weight, the structure of side chain and the monosaccharide composition. Especially, many pectic oligosaccharides with low molecular weight demonstrated high prebiotic activities, and those with arabinogalactan side chains exhibited strong anticancer activities. Moreover, pectic oligosaccharides have been used in food preservatives, dairy product additives and food processing aids. Nevertheless, the industrial application, novel technology exploration, and structure-bioactivity relationship of pectic oligosaccharides remain a demanding and significant task for future work.

11.
Food Res Int ; 182: 114182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519194

RESUMO

Lactoferrin (LF) is a thermally sensitive iron-binding globular glycoprotein. Heat treatment can induce its denaturation and aggregation and thus affect its functional activity. In this study, carrageenan (CG), xanthan gum (XG) and locust bean gum (LBG), allowed to apply in infant food, were used to form protein-polysaccharide complexes to improve the thermal stability of LF. Meanwhile, in vitro simulated infant digestion and absorption properties of LF were also estimated. The results showed that the complexes formed by CG and XG with LF (LF-CG and LF-XG) could significantly inhibit the loss of α-helix structure of LF against heating. LF-CG and LF-LBG could protect LF from digestion in simulated infant gastric fluid and slow down the degradation of LF under the simulated intestinal conditions. Besides, LF, LF-CG and LF-XG showed no adverse effects on the growth of Caco-2 cells in the LF concentration range of 10-300 µg/mL, and LF-XG exhibited better beneficial to improve the cell uptake of the digestive product than the other protein-polysaccharides at the LF concentration of 100 µg/mL. This study may provide a reference for the enhancement of thermal processing stability of LF and development infant food ingredient with high nutrients absorption efficiency in the gastrointestinal environment in the future.


Assuntos
Trato Gastrointestinal , Lactoferrina , Lactente , Humanos , Lactoferrina/química , Células CACO-2 , Fenômenos Químicos , Trato Gastrointestinal/metabolismo
12.
Philos Trans A Math Phys Eng Sci ; 382(2271): 20230094, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38522461

RESUMO

At the Royal Society meeting in 2023, we have mainly presented our lunar orbit array concept called DSL, and also briefly introduced a concept of a lunar surface array, LARAF. As the DSL concept had been presented before, in this article, we introduce the LARAF. We propose to build an array in the far side of the Moon, with a master station which handles the data collection and processing, and 20 stations with maximum baseline of 10 km. Each station consists of 12 membrane antenna units, and the stations are connected to the master station by power line and optical fibre. The array will make interferometric observation in the 0.1-50 MHz band during the lunar night, powered by regenerated fuel cells. The whole array can be carried to the lunar surface with a heavy rocket mission, and deployed with a rover in eight months. Such an array would be an important step in the long-term development of lunar-based ultralong wavelength radio astronomy. It has a sufficiently high sensitivity to observe many radio sources in the sky, though still short of the dark age fluctuations. We discuss the possible options in the power supply, data communication, deployment etc. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades (part 2)'.

13.
J Hazard Mater ; 468: 133810, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38382340

RESUMO

Organic contaminants have a tendency to accumulate in low-permeability aquifers, making their removal challenging and creating a bottleneck in groundwater remediation efforts. The use of ozone micro-nano bubbles, due to their smaller size compared to traditional macrobubbles, shows potential for efficient penetration into the low-permeability aquifer and effective oxidization of contaminants. This study conducted batch experiments, column studies, and 2D tank experiments to systematically investigate the remediation efficiency of toluene in a heterogeneous aquifer using ozonated water (OW), ozone micro-bubble water (OMBW), and encapsulated ozone micro-nano bubble water (EOMBW) with rhamnolipid. Experimental results showed that rhamnolipid effectively increased the densities and reduced the sizes of micro-nano bubbles, leading to improved ozone preservation and enhanced toluene degradation. Nanobubbles exhibited higher mobility compared to microbubbles in porous media, while rhamnolipid increased the density of penetrated nanobubbles by 9.6 times. EOMBW demonstrated superior efficiency in oxidizing toluene in low-permeability aquifers, and a numerical model was developed to successfully simulate the ozone and toluene concentration. The model revealed that the increased oxidation rate by EOMBW was attributed to the preservation of ozone in micro-nano bubbles and the enhanced toluene oxidation rate. These findings contribute significantly to the application of EOMBW in heterogeneous aquifer remediation.

14.
Heliyon ; 10(4): e25874, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375242

RESUMO

In this work, we present a novel stretchable bimodal sensor that can simultaneously detect temperature and humidity changes based on poly-hydroxyethyl acrylate (PHEA) elastomer infused with 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ionic liquid. The sensor exhibits high transparency, stability, and biocompatibility, as well as excellent mechanical and sensing properties. The sensor can achieve a maximum strain of 761%, a sensitivity of 4.5%/°C at room temperature, a detection range from -35 to 120 °C, and a response time of 10 ms. The sensor is able to provide acute response to movement of human hand at close range and can detect temperature changes as small as 0.004 °C in the range of 20-30 °C. The sensor also responds to humidity change, showing a high sensitivity to humidity change of 4.4%/RH% under the temperature of 30 °C. The sensor can be used for various applications in wearable electronics, human-machine interfaces, and soft robotics.

15.
Food Chem ; 444: 138669, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38341915

RESUMO

Improving the emulsion-stabilizing effect of protein by chemical or physical modification has been paid much attention recently. Here, sodium caseinate (CS) was treated by high-pressure-microfluidization (HPM) under 0-100 MPa, and was further complexed with (-)-epigallocatechin-3-gallate (EGCG) to form an excellent emulsifier that stabilized fish oil emulsions. Results showed that HPM treatment (especially 80 MPa) significantly changed the secondary structure of CS, and 80 MPa-PCS-EGCG had the best emulsifying and antioxidant activities. In addition, after HPM treatment and EGCG bonding, CS formed a thicker interface layer on the surface of oil droplets, which could better protect the fish oil from the influence by oxygen, temperature and ion concentration. Moreover, the fish oil emulsion stabilized by PCS-EGCG complex significantly delayed the release of free fatty acids subjected to in vitro digestion. Conclusively, HPM-treated CS-EGCG complex could be a potential emulsifier to improve the stability of fish oil emulsions.


Assuntos
Caseínas , Catequina/análogos & derivados , Óleos de Peixe , Emulsões/química , Óleos de Peixe/química , Caseínas/química , Emulsificantes/química
16.
Food Chem ; 441: 138346, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38241927

RESUMO

Inspired by membrane structure of breast milk and infant formula fat globules, four liposomes with different particle size (large and small) and compositions (Single phospholipids contained phosphatidylcholine, complex phospholipids contained phosphatidylcholine, phosphatidylethanolamine and sphingomyelin) were fabricated to deliver lactoferrin and DHA. In vitro infant semi-dynamic digestive behavior and absorption in intestinal organoids of liposomes were investigated. Liposomal structures were negligible changed during semi-dynamic gastric digestion while damaged in intestine. Liposomal degradation rate was primarily influenced by particle size, and complex phospholipids accelerated DHA hydrolysis. The release rate of DHA (91.7 ± 1.3 %) in small-sized liposomes (0.181 ± 0.001 µm) was higher than free DHA (unencapsulated, 64.6 ± 3.4 %). Complex phospholipids liposomal digesta exhibited higher transport efficiency (3.4-fold for fatty acids and 2.0-fold for amino acids) and better organoid growth than digesta of bare nutrients. This study provided new insights into membrane structure-functionality relationship of liposomes and may aid in the development of novel infant nutrient carriers.


Assuntos
Lactoferrina , Lipossomos , Lactente , Feminino , Humanos , Animais , Suínos , Lipossomos/química , Lactoferrina/química , Fosfolipídeos/química , Fosfatidilcolinas , Digestão , Ácidos Docosa-Hexaenoicos
17.
Mol Neurobiol ; 61(2): 753-771, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37659035

RESUMO

Chronic consumption of a high-fat diet (HFD) has profound effects on brain aging, which is mainly characterized by cognitive decline, inflammatory responses, and neurovascular damage. Alisol A (AA) is a triterpenoid with therapeutic potential for metabolic diseases, but whether it has a neuroprotective effect against brain aging caused by a HFD has not been investigated. Six-month-old male C57BL6/J mice were exposed to a HFD with or without AA treatment for 12 weeks. Behavioral tasks were used to assess the cognitive abilities of the mice. Neuroinflammation and changes in neurovascular structure in the brains were examined. We further assessed the mechanism by which AA exerts neuroprotective effects against HFD-induced pathological brain aging in vitro and in vivo. Behavioral tests showed that cognitive function was improved in AA-treated animals. AA treatment reduced microglia activation and inflammatory cytokine release induced by a HFD. Furthermore, AA treatment increased the number of hippocampal neurons, the density of dendritic spines, and the expression of tight junction proteins. We also demonstrated that AA attenuated microglial activation by targeting the SIRT3-NF-κB/MAPK pathway and ameliorated microglial activation-induced tight junction degeneration in endothelial cells and apoptosis in hippocampal neurons. The results of this study show that AA may be a promising agent for the treatment of HFD-induced brain aging.


Assuntos
Colestenonas , Fármacos Neuroprotetores , Sirtuína 3 , Camundongos , Masculino , Animais , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Sirtuína 3/metabolismo , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Camundongos Endogâmicos C57BL
18.
Int J Clin Health Psychol ; 24(1): 100421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38077287

RESUMO

Background/Objective: To investigate the modulatory effects of different physical exercise modalities on connectivity of amygdala subregions and its association with pain symptoms in patients with knee osteoarthritis (KOA). Methods: 140 patients with KOA were randomly allocated either to the Tai Chi, Baduanjin, Stationary cycling, or health education group and conducted a 12 week-long intervention in one of the four groups. The behavioral, magnetic resonance imaging (MRI), and blood data were collected at baseline and the end of the study. Results: Compared to the control group, all physical exercise modalities lead to significant increases in Knee Injury and Osteoarthritis Outcome Score (KOOS) pain score (pain relief) and serum Programmed Death-1 (PD-1) levels. Additionally, all physical exercise modalities resulted in decreased resting state functional connectivity (rsFC) of the basolateral amygdala (BA)-temporal pole and BA-medial prefrontal cortex (mPFC). The overlapping BA-temporal pole rsFC observed in both Tai Chi and Baduanjin groups was significantly associated with pain relief, while the BA-mPFC rsFC was significantly associated with PD-1 levels. In addition, we found increased fractional anisotropy (FA) values, a measurement of water diffusion anisotropy of tissue that responded to changes in brain microstructure, within the mind-body exercise groups' BA-temporal pole pathway. The average FA value of this pathway was positively correlated with KOOS pain score at baseline across all subjects. Conclusions: Our findings suggest that physical exercise has the potential to modulate both functional and anatomical connectivity of the amygdala subregions, indicating a possible shared pathway for various physical exercise modalities.

19.
Biol Res ; 56(1): 65, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041203

RESUMO

BACKGROUND: Impaired pattern separation occurs in the early stage of Alzheimer's disease (AD), and hippocampal dentate gyrus (DG) neurogenesis participates in pattern separation. Here, we investigated whether spatial memory discrimination impairment can be improved by promoting the hippocampal DG granule cell neogenesis-mediated pattern separation in the early stage of AD by electroacupuncture (EA). METHODS: Five familial AD mutations (5 × FAD) mice received EA treatment at Baihui and Shenting points for 4 weeks. During EA, mice were intraperitoneally injected with BrdU (50 mg/kg) twice a day. rAAV containing Wnt5a shRNA was injected into the bilateral DG region, and the viral efficiency was evaluated by detecting Wnt5a mRNA levels. Cognitive behavior tests were conducted to assess the impact of EA treatment on cognitive function. The hippocampal DG area Aß deposition level was detected by immunohistochemistry after the intervention; The number of BrdU+/CaR+ cells and the gene expression level of calretinin (CaR) and prospero homeobox 1(Prox1) in the DG area of the hippocampus was detected to assess neurogenesis by immunofluorescence and western blotting after the intervention; The gene expression levels of FZD2, Wnt5a, DVL2, p-DVL2, CaMKII, and p-CaMKII in the Wnt signaling pathway were detected by Western blotting after the intervention. RESULTS: Cognitive behavioral tests showed that 5 × FAD mice had impaired pattern separation (P < 0.001), which could be improved by EA (P < 0.01). Immunofluorescence and Western blot showed that the expression of Wnt5a in the hippocampus was decreased (P < 0.001), and the neurogenesis in the DG was impaired (P < 0.001) in 5 × FAD mice. EA could increase the expression level of Wnt5a (P < 0.05) and promote the neurogenesis of immature granule cells (P < 0.05) and the development of neuronal dendritic spines (P < 0.05). Interference of Wnt5a expression aggravated the damage of neurogenesis (P < 0.05), weakened the memory discrimination ability (P < 0.05), and inhibited the beneficial effect of EA (P < 0.05) in AD mice. The expression level of Wnt pathway related proteins such as FZD2, DVL2, p-DVL2, CAMKII, p-CAMKII increased after EA, but the effect of EA was inhibited after Wnt5a was knocked down. In addition, EA could reduce the deposition of Aß plaques in the DG without any impact on Wnt5a. CONCLUSION: EA can promote hippocampal DG immature granule cell neogenesis-mediated pattern separation to improve spatial memory discrimination impairment by regulating Wnt5a in 5 × FAD mice.


Assuntos
Doença de Alzheimer , Eletroacupuntura , Camundongos , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Bromodesoxiuridina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças , Neurogênese , Giro Denteado/metabolismo
20.
Molecules ; 28(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067580

RESUMO

Diabetic kidney disease is a common complication of diabetes and remains the primary cause of end-stage kidney disease in the general population. Schisandrin B (Sch B) is an active ingredient in Schisandra chinensis. Our study illustrates that Sch B can mitigate renal tubular cell (RTC) epithelial-mesenchymal transition (EMT) and mitochondrial dysfunction in db/db mice, accompanied by the downregulation of TGF-ß1 and the upregulation of PGC-1α. Similarly, Sch B demonstrated a protective effect by reducing the expression of TGF-ß1, α-SMA, fibronectin, and Col I, meanwhile enhancing the expression of E-cadherin in human RTCs (HK2 cells) stimulated with high glucose. Moreover, under high glucose conditions, Sch B effectively increased mitochondrial membrane potential, lowered ROS production, and increased the ATP content in HK2 cells, accompanied by the upregulation of PGC-1α, TFAM, MFN1, and MFN2. Mechanistically, the RNA-seq results showed a significant increase in KCP mRNA levels in HK2 cells treated with Sch B in a high glucose culture. The influence of Sch B on KCP mRNA levels was confirmed by real-time PCR in high glucose-treated HK2 cells. Depletion of the KCP gene reversed the impact of Sch B on TGF-ß1 and PGC-1α in HK2 cells with high glucose level exposure, whereas overexpression of the KCP gene blocked EMT and mitochondrial dysfunction. Furthermore, the PI3K/Akt pathway was inhibited and the AMPK pathway was activated in HK2 cells exposed to a high concentration of glucose after the Sch B treatment. Treatment with the PI3K/Akt pathway agonist insulin and the AMPK pathway antagonist compound C attenuated the Sch B-induced KCP expression in HK2 cells exposed to a high level of glucose. Finally, molecular autodock experiments illustrated that Sch B could bind to Akt and AMPK. In summary, our findings suggested that Sch B could alleviate RTC EMT and mitochondrial dysfunction by upregulating KCP via inhibiting the Akt pathway and activating the AMPK pathway in DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Doenças Mitocondriais , Camundongos , Animais , Humanos , Nefropatias Diabéticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Cima , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Transição Epitelial-Mesenquimal , RNA Mensageiro , Adenosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA