RESUMO
We propose a scheme consisting of coupled nanomechanical cantilever resonators and superconducting flux qubits to engineer a parity-time- (P T-) symmetric phononic system formed by active and passive modes. The effective gain (loss) of the phonon mode is achieved by the longitudinal coupling of the resonator and the fast dissipative superconducting qubit with a blue-sideband driving (red-sideband driving). A P T-symmetric to broken-P T-symmetric phase transition can be observed in both balanced gain-to-loss and unbalanced gain-to-loss cases. Applying a resonant weak probe field to the dissipative resonator, we find that (i) for balanced gain and loss, the acoustic signal absorption to amplification can be tuned by changing the coupling strength between resonators; (ii) for unbalanced gain and loss, both acoustically induced transparency and anomalous dispersion can be observed around Δ = 0, where the maximum group delay is also located at this point. Our work provides an experimentally feasible scheme to design P T-symmetric phononic systems and a powerful platform for controllable acoustic signal transmission in a hybrid quantum system.
RESUMO
Chemical warfare agents (CWAs) are among the most lethal chemicals known to humans. Thus, developing multifunctional catalysts for highly efficient detoxification of various CWAs is of great importance. In this work, we developed a robust copper tetrazolate metal-organic framework (MOF) catalyst containing a dicopper unit similar to the coordination geometry of the active sites of natural phosphatase and tyrosinase enzymes. This catalyst aided in phosphate ester bond hydrolysis and hydrogen peroxide decomposition, ultimately achieving high detoxification efficiency against both a nerve agent simulant (diethoxy-phosphoryl cyanide (DECP)) with a half-life of 3.5 min and a sulfur mustard simulant (2-chloroethyl ethyl sulfide (CEES)) with a half-life of 4.5 min, making it competitive with other reported materials. The dicopper sites in ZZU-282 provide versatile binding modes with the substrates, thereby promoting the activation of substrates and enhancing the catalytic efficiency. A combination of postmodified metal exchange control experiments, density functional theory calculations, and catalytic evaluations confirmed that dual Cu sites are the active centers promoting the catalytic reaction. This study offers a new design perspective to achieve advanced catalysts for CWA detoxification.
Assuntos
Substâncias para a Guerra Química , Estruturas Metalorgânicas , Humanos , Substâncias para a Guerra Química/química , Cobre , Catálise , OrganofosfatosRESUMO
Nitrite and ammonia often coexist in waters. Thus, it is very significant to develop a photocatalytic process for the simultaneous removal of nitrite and ammonia. Herein, zinc ferrite/activated carbon (ZnFe2O4/AC) was synthesized and characterized by X-ray diffraction spectroscopy, transmission electron microscopy, Raman spectroscopy, and ultraviolet-visible diffuse reflectance spectroscopy. The valence band level of ZnFe2O4 was measured by X-ray photoelectron spectroscopy-valence band spectroscopy, and first-principles calculation was performed to confirm the band structure of ZnFe2O4. The as-synthesized ZnFe2O4/AC species functioned as a photocatalyst to simultaneously remove nitrite and ammonia under anaerobic conditions upon UV-visible light irradiation at the first stage. The results indicated that an average removal ratio of 92.7% with ±0.2% error for nitrite degradation for three runs was achieved in 50.0 mg/L nitrite + 100.0 mg/L ammonia solution with pH 9.5 under anaerobic conditions for 3 h at this stage; simultaneously, the removal ratio of 64.0% with ±0.2% error for ammonia was also achieved. At the second stage, oxygen gas was bubbled in the reactor to photocatalytically eliminate residual ammonia under aerobic conditions upon continuous irradiation. The results demonstrated that the removal ratios for nitrite, ammonia, and total nitrogen reached to 92.0, 90.0, and 90.2% at 12th hour, respectively, and the product released during photocatalysis is N2 gas, detected by gas chromatography, fulfilling the simultaneous removal of nitrite and ammonia. The reaction mechanism was exploited.
RESUMO
Cerebral ischemia impairs physiological form of synaptic plasticity such as long-term potentiation (LTP). Clinical symptoms of cognitive dysfunction resulting from cerebral ischemia are associated with neuron loss and synaptic function impairment in hippocampus. It has been widely reported that cordycepin displays neuroprotective effect on ameliorating cognitive dysfunction induced by cerebral ischemia. Therefore, it is necessary to study whether cordycepin recovers cognitive function after brain ischemia through improving LTP induction. However, there has been very little discussion about the effects of cordycepin on LTP of cerebral ischemia so far. In the present study, we investigated the effects of cordycepin on LTP impairment and neuron loss induced by cerebral ischemia and excitotoxicity, using electrophysiological recording and Nissl staining techniques. The models were obtained by bilateral common carotid artery occlusion (BCCAO) and intrahippocampal NMDA microinjection. We also explored whether adenosine A1 receptors involve in the neuroprotection of cordycepin by using western blot. We found that cordycepin remarkably alleviated LTP impairment and protected pyramidal cell of hippocampal CA1 region against cerebral ischemia and excitotoxicity. Meanwhile, cordycepin prevented the reduction on adenosine A1 receptor level caused by ischemia but did not alter the adenosine A2A receptor level in hippocampal CA1 area. The improvement of LTP in the excitotoxic rats after cordycepin treatment could be blocked by DPCPX, a selective antagonist of adenosine A1 receptor. In summary, our findings provided new insights into the mechanisms of cordycepin neuroprotection in excitotoxic diseases, which is through regulating adenosine A1 receptor to improve LTP formation and neuronal survival.
Assuntos
Desoxiadenosinas/farmacologia , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Receptor A1 de Adenosina/metabolismo , Animais , Contagem de Células , Regulação da Expressão Gênica/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/fisiologiaRESUMO
Near-infrared (NIR)-response photocatalysts are desired to make use of 44% NIR solar irradiation. A flower-like α-MnO2/N-doped graphene (NG) hybrid catalyst was synthesized and characterized by X-ray diffraction spectroscopy, transmission electron microscopy, Raman spectroscopy, UV-vis-NIR diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The flower-like material of α-MnO2/NG was oval-shaped with the semi major axis of 140 nm and semi minor axis of 95 nm and the petal thickness of 3.5-8.0 nm. The indirect band gap was measured to be 1.16 eV, which is very close to 0.909 eV estimated by the first-principles calculation. The band gap can harvest NIR irradiation to 1069 nm. The coupling of α-MnO2 with NG sheets to form α-MnO2/NG can significantly extend the spectrum response up to 1722 nm, improving dramatically the photocatalytic activity. The experimental results displayed that the α-MnO2/NG hybrid catalyst can recognize ammonia in methyl orange (MO)-ammonia, rhodamine B (RHB)-ammonia, and humic acid-ammonia mixed solutions and selectively degrade ammonia. The degradation ratio of ammonia reached over 93.0% upon NIR light irradiation in the mixed solutions, while those of MO, RHB, and humic acid were only 9.7, 9.4, and 15.7%, respectively. The products formed during the photocatalytic process were followed with ion chromatography, gas chromatography, and electrochemistry. The formed nitrogen gas has been identified during the photocatalytic process. A valence band recognition model was suggested based on the selective degradation of ammonia via α-MnO2/NG.
RESUMO
Cordycepin, an adenosine analogue, has been reported to improve cognitive function. Important roles on learning and memory of adenosine and its receptors, such as adenosine A1 and A2A receptors (A1R and A2AR), also have been shown. Therefore, we assume that the improvement of learning and memory induced by cordycepin is likely related to hippocampal adenosine content and adenosine receptor density. Here we investigated the effects of cordycepin on the short-term spatial memory by using a spontaneous alternation behavior (SAB) test in Y-maze, and then examined hippocampal adenosine content and A1R and A2AR densities. We found that orally administrated cordycepin (at dosages of 5 and 10mg/kg twice daily for three weeks) significantly increased the percent of relative alternation of mice in SAB but not altered body weight, hippocampus weight and hippocampal adenosine content. Furthermore, cordycepin decreased A2AR density in hippocampal subareas; however, cordycepin only reduced the A1R density in DG but not CA1 or CA3 region. Our results suggest that cordycepin exerts a nootropic role possibly through modulating A2AR density of hippocampus, which further support the concept that it is mostly A2AR rather than A1R to control the adaptive processes of memory performance. These findings would be helpful to provide a new window into the pharmacological properties of cordycepin for cognitive promotion.
Assuntos
Desoxiadenosinas/farmacologia , Hipocampo/efeitos dos fármacos , Nootrópicos/farmacologia , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Memória Espacial/efeitos dos fármacos , Adenosina/farmacologia , Administração Oral , Animais , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/anatomia & histologia , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Estatísticas não Paramétricas , Fatores de TempoRESUMO
A novel Li-ion capacitor based on an activated carbon cathode and a well-dispersed ultrafine TiO2 nanoparticles embedded in mesoporous carbon nanofibers (TiO2@PCNFs) anode was reported. A series of TiO2@PCNFs anode materials were prepared via a scalable electrospinning method followed by carbonization and a postetching method. The size of TiO2 nanoparticles and the mesoporous structure of the TiO2@PCNFs were tuned by varying amounts of tetraethyl orthosilicate (TEOS) to increase the energy density and power density of the LIC significantly. Such a subtle designed LIC displayed a high energy density of 67.4 Wh kg-1 at a power density of 75 W kg-1. Meanwhile, even when the power density was increased to 5 kW kg-1, the energy density can still maintain 27.5 Wh kg-1. Moreover, the LIC displayed a high capacitance retention of 80.5% after 10000 cycles at 10 A g-1. The outstanding electrochemical performance can be contributed to the synergistic effect of the well-dispersed ultrafine TiO2 nanoparticles, the abundant mesoporous structure, and the conductive carbon networks.
RESUMO
BACKGROUND: Tenuigenin (TEN), a natural product from the Chinese herb Polygala tenuifolia root, has been reported to improve cognitive function and exhibits neuroprotective effects in pharmacological studies of the central nervous system. Synaptic transmission is the essential process of brain physiological functions such as learning and memory formation, and TEN has been shown to facilitate the basic synaptic transmission. HYPOTHESIS/PURPOSE: Although our previous work has demonstrated that TEN is able to potentiate the basic synaptic transmission, the potential mechanism remains unclear. Here we investigated the effect of TEN on the synaptic transmission and analysed the potential mechanism. We hope that these findings will contribute to explain the role of TEN as a nootropic product or neuroprotective drug in the future. METHODS: Field excitatory postsynaptic potentials (fEPSPs), spontaneous excitatory postsynaptic currents (sEPSCs) and miniature spontaneous excitatory postsynaptic currents (mEPSCs) were recorded, by using in vitro field potential electrophysiology and whole-cell patch clamp techniques in acute hippocampal slices from rats. RESULTS: TEN perfusion significantly enhanced the slope of fEPSPs and reduced the ratio of paired-pulse facilitation. Moreover, TEN increased the frequency and amplitude of sEPSCs but only improved the frequency of mEPSCs rather than amplitude in hippocampal CA1 pyramidal neurons. With removal of extracellular calcium, TEN treatment also enhanced the mEPSCs frequency without affecting amplitude. Interestingly, the increase of mEPSCs frequency caused by TEN was blocked by chelation of intracellular calcium with BAPTA-AM. CONCLUSION: These results indicate that TEN enhances the basic synaptic transmission via stimulating presynaptic intracellular calcium.
Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Cálcio/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Potenciais Pós-Sinápticos Excitadores , Transmissão Sináptica/efeitos dos fármacos , Animais , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Sprague-DawleyRESUMO
GABAB receptor is present at pre- and post-synaptic sites and participates in many brain functions including cognition, reward and anxiety. Although a lot of research has shown that activation or blockade of GABAB receptor may produce different even opposing effects on long-term potentiation (LTP) and cognitive function, there is little information available concerning the effect of GABAB receptor on behavioral LTP, a learning-induced LTP model. Herein, we firstly examined the effects of 2-OH saclofen, a GABAB receptor antagonist, on the induction of behavioral LTP and Y-maze learning performance. In addition, GABAB receptor has been reported to be present on cholinergic terminals and to regulate the ACh release. Therefore, we also investigated the effect of 2-OH saclofen on the impairments in behavioral LTP and cognitive function induced by scopolamine, an acetylcholine receptor antagonist. We found that intrahippocampal application of 2-OH saclofen could significantly enhance the population spike (PS) amplitude with a dose-response relationship, and 20 µM 2-OH saclofen evidently facilitated the formation of behavioral LTP in the perforant pathway to the dentate gyrus (PP-DG) and led to an obvious improvement in maze learning performance. Furthermore, intrahippocampal 20 µM 2-OH saclofen administration could markedly reverse the scopolamine-induced impairments in behavioral LTP and maze performance. Our data demonstrate that blockade of GABAB receptor displays a facilitatory role in the induction of behavioral LTP and maze learning task, and the antagonist of GABAB receptor seems to exert the potentially therapeutic value in the cognitive defect induced by cholinergic dysfunction.
Assuntos
Baclofeno/análogos & derivados , Antagonistas de Receptores de GABA-B/farmacologia , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Animais , Baclofeno/farmacologia , Cognição/efeitos dos fármacos , Masculino , Ratos Sprague-DawleyRESUMO
Cordycepin (3'-deoxyadenosine) is the major bioactive component of Cordyceps militaris that has been widely used in oriental countries as a Traditional Chinese Medicine and healthy food for preventing early aging, improving physical performance and increasing lifespan. Cordyceps militaris extracts other than cordycepin have been reported to improve cognitive function. Although cordycepin is one of the most utilized Cordyceps militaris components, it remains unknown whether cordycepin could improve learning and memory. Here we investigated effects of cordycepin on learning and memory in healthy and ischemic mice using Y-maze test. We found that oral cordycepin administration at dose of 10 mg/kg significantly improved Y-maze learning performance both in healthy and ischemic mice. However, cordycepin at dose of 5 mg/kg enhanced Y-maze learning only in ischemic mice but not healthy mice. In this study, simultaneously, we found that orally administrated cordycepin significantly decreased the neuronal loss induced by ischemia in hippocampal CA1 and CA3 regions. Collectively, our results can provide valuable evidence that cordycepin may act as a nootropic product or potential clinical application in improving cognitive function of patients with ischemic stroke in the future.
Assuntos
Desoxiadenosinas/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Nootrópicos/farmacologia , Animais , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Cognição/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hipocampo/patologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologiaRESUMO
Estrogen deficiency is associated with cognitive impairment. Hormone replacement therapy (HRT) has proven to be effective in preventing and reversing the memory and learning deficiencies. However, conventional estrogenic treatment could increase the risks of breast cancer and venous thromboembolism. Tenuigenin (TEN) is putatively believed as the active component extracted from a Chinese herb Polygala tenuifolia root. Although TEN has been shown to enhance learning and memory in healthy mice, it remains unknown whether or not TEN could ameliorate learning and memory impairments. In the present study, mice were divided into four groups: sham-operated (sham), ovariectomized (OVX), OVX+estradiol benzoate (EB) and OVX+TEN groups. Step-through passive avoidance and Y-maze tests were used to assess learning and memory abilities, and the number of nitric oxide synthase (NOS) positive neurons and the synaptic measurement of hippocampal CA1 area were examined. The results showed that TEN was given orally to OVX mice, leading to the improvement of learning and memory in step-through passive avoidance and Y-maze tests. TEN could reduce the loss of NOS positive neurons and prevent the synaptic morphological changes induced by ovariectomy. Our results suggest that TEN may exert a potential therapeutic value for menopause cognitive dysfunction.
Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Deficiências da Aprendizagem/tratamento farmacológico , Deficiências da Aprendizagem/psicologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/psicologia , Ovariectomia/efeitos adversos , Ovariectomia/psicologia , Animais , Aprendizagem da Esquiva/fisiologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/ultraestrutura , Transtornos Cognitivos/psicologia , Estradiol/análogos & derivados , Estradiol/farmacologia , Feminino , Deficiências da Aprendizagem/etiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/etiologia , Camundongos , NADPH Desidrogenase/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/ultraestruturaRESUMO
Polygala tenuifolia root has been used to improve memory and cognitive function in Traditional Chinese Medicine for more than 2000 years. Since tenuigenin (TEN) is one of the most utilized P. tenuifolia root extracts, it is surprising there is no evidence for the effects of TEN on learning and memory so far. In the present study, we investigated the effects of TEN on learning and memory with Y-maze test in mice. We found that oral administration of 4mg/kg TEN significantly improved learning and memory in Y-maze task. Treatment with 4mg/kg TEN markedly reduced the acetylcholinesterase (AChE) activity and malondialdehyde (MDA) level, and increased superoxide dismutase (SOD) activity in hippocampus. In the electrophysiological test of hippocampal brain slice, 2µg/ml TEN perfusion substantially enhanced field excitatory postsynaptic potential (fEPSP) amplitude both in basic synaptic transmission and after high frequency stimulation (HFS) in Schaffer to CA1 pathway (Scha-CA1). These results indicate that TEN enhancing learning and memory may result from inhibiting AChE activity, improving antioxidation and enhancing synaptic plasticity in mice. Therefore, TEN shows promise as a potential nootropic product in improving learning and memory.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Nootrópicos/farmacologia , Acetilcolinesterase/metabolismo , Animais , Aprendizagem por Discriminação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estimulação Elétrica , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Especificidade da Espécie , Superóxido Dismutase/metabolismo , Fatores de TempoRESUMO
AIMS: Cordycepin plays an important role in modulating the function of central nervous system (CNS). However, the modulating mechanism is poorly understood. Excitatory synaptic transmission, the essential process in brain physiology and pathology, is critical in the signal integration activities of the CNS. To further understand the effects of cordycepin on CNS, we investigated the effects of cordycepin on excitatory synaptic transmission in the CA1 region of rat hippocampal slices. METHODS: The effects of cordycepin on excitatory synaptic transmission were investigated by using in vitro field potential electrophysiology and whole-cell patch clamp techniques. RESULTS: Cordycepin significantly decreased the amplitudes of field excitatory postsynaptic potentials (fEPSPs) elicited in the CA1 by stimulation of the Schaffer-commissural fibers. And the reduction in fEPSPs amplitude was associated with an increase in the paired-pulse facilitation. Cordycepin also suppressed α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptor-mediated responses but did not directly affect AMPA receptors and NMDA receptors. Furthermore, quantal analysis revealed that cordycepin decreased the frequency but not amplitude of miniature spontaneous excitatory postsynaptic currents. CONCLUSIONS: These results demonstrate that cordycepin suppresses excitatory synaptic transmission by decreasing the excitatory neurotransmitter release presynaptically, which provides an evidence for the novel potential mechanism of cordycepin in modulating the function of CNS.
Assuntos
Desoxiadenosinas/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologiaRESUMO
Using a combination of electrophysiological recordings, behavioral tests and local pharmacological administration in hippocampus, we investigated in the present study the effects of nitric oxide (NO) synthase inhibitor N-nitro-l-arginine methyl ester (l-NAME) on the behavioral long-term potentiation (LTP) and maze learning performance in freely moving rats. The results showed as follows: (1) intrahippocampal l-NAME administration led to a defect in maze learning performance of the animals; (2) l-NAME treatment also substantially impaired the induction of the behavioral LTP in perforant pathway to dentate gyrus (PP-DG) pathway induced by maze learning task, while it had no significant effects on basic synaptic transmission in PP-DG pathway; Collectively, these results indicate that NO synthesis may be critical for the behavioral LTP in PP-DG pathway and maze learning performance.
Assuntos
Comportamento Animal/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Animais , Giro Denteado/fisiologia , Hipocampo/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Via Perfurante/efeitos dos fármacos , Via Perfurante/fisiologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacosRESUMO
Cordycepin (3'-deoxyadenosine) is the main functional component of Cordycepins militaris, a renowned traditional Chinese medicine, which has been shown to possess anti-tumor, anti-inflammatory, anti-diabetic and neuro-protective effects. However, the effect of cordycepin on the central nervous system (CNS) remains unclear. In this study, the effects of cordycepin on neuronal activity were investigated on the CA1 pyramidal neurons in rat hippocampal brain slices using a whole-cell patch clamp technique. Our results revealed that cordycepin significantly decreased the frequency of both the spontaneous and evoked action potential (AP) firing. While AP spike width, the amplitude of fast after hyperpolarization (fAHP), and membrane input resistance were not altered by cordycepin, the neuronal membrane potential was hyperpolarized by cordycepin. Collectively, these results demonstrate that cordycepin reduces neuronal activity by inducing membrane hyperpolarization, indicating that cordycepin may be a potential therapeutic strategy for ischemic and other excitotoxic disorders.