RESUMO
Immunosuppressive tumor microenvironment (ITM) severely limited the efficacy of immunotherapy against triple-negative breast cancer (TNBC). Herein, Apt-LPR, a light-activatable photodynamic therapy (PDT)/RNAi immune synergy-enhancer was constructed by co-loading miR-34a and photosensitizers in cationic liposomes (in phase III clinical trial). Interestingly, the introduction of tumor-specific aptamers creates a special "Liposome-Aptamer-Target" interface, where the aptamers are initially in a "lying down" state but transform to "standing up" after target binding. The interfacing mechanism was elaborately revealed by computational and practical experiments. This unique interface endowed Apt-LPR with neutralized surface potential of cationic liposomes to reduce non-specific cytotoxicity, enhanced DNase resistance to protect aptamers, and preserved target-binding ability for selective drug delivery. Upon near-infrared irradiation, the generated reactive oxygen species would oxidize unsaturated phospholipids to destabilize both liposomes and lysosomes, realizing stepwise lysosomal escape of miR-34a for tumor cell apoptosis and downregulation of PD-L1 to suppress immune escape. Together, tumor-associated antigens released from PDT-damaged mitochondria and endoplasmic reticulum could activate the suppressive immune cells to establish an "immune hot" milieu. The collaborative immune-enhancing strategy effectively aroused systemic antitumor immunity and inhibited primary and distal tumor progression as well as lung metastasis in 4T1 xenografted mouse models. The photo-controlled drug release and specific tumor-targeting capabilities of Apt-LPR were also visualized in MDA-MB-231 xenografted zebrafish models. Therefore, this photoswitchable PDT/RNAi immune stimulator offered a powerful approach to reprogramming ITM and reinforcing cancer immunotherapy efficacy.
Assuntos
Lipossomos , MicroRNAs , Fotoquimioterapia , Fármacos Fotossensibilizantes , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Animais , Humanos , Lipossomos/química , MicroRNAs/genética , MicroRNAs/metabolismo , Fotoquimioterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Feminino , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Camundongos , Aptâmeros de Nucleotídeos/química , Preparações de Ação Retardada/química , Interferência de RNA , Peixe-ZebraRESUMO
The ubiquitination or SUMOylation of hematopoietic related factors plays pivotal roles in hematopoiesis. RNF111, known as a ubiquitin ligase (Ubl), is a newly discovered SUMO-targeted ubiquitin ligase (STUbl) involved in multiple signaling pathways mediated by TGF-ß family members. However, its role in hematopoiesis remains unclear. Herein, a heritable Rnf111 mutant zebrafish line was generated by CRISPR/Cas9-mediated genome editing. Impaired hematopoietic stem and progenitor cells (HSPC) of definitive hematopoiesis was found in Rnf111 deficient mutants. Ablation of Rnf111 resulted in decreased phosphorylation of Smad2/3 in HSPC. Definitive endoderm 2 inducer (IDE2), which specifically activates TGF-ß signaling and downstream Smad2 phosphorylation, can restore the definitive hematopoiesis in Rnf111-deficient embryos. Further molecular mechanism studies revealed that Gcsfr/NO signaling was an important target pathway of Smad2/3 involved in Rnf111-mediated HSPC development. In conclusion, our study demonstrated that Rnf111 contributes to the development of HSPC by maintaining Smad2/3 phosphorylation and the Gcsfr/NO signaling pathway activation. Keywords: Rnf111, Ubiquitin ligase (UbL), HSPC, Smad2/3, Gcsfr/NO.
RESUMO
BACKGROUND: Aldo-keto reductase family 1 member C3 (AKR1C3) is a radioresistance gene in esophageal cancer. This study aimed to investigate the signaling pathways that mediate the regulatory role of AKR1C3 in the radioresistance of esophageal cancer cells. METHODS: The protein levels of AKR1C3 in cancer tissue samples were compared between patients with radiosensitive and radioresistant esophageal cancer using immunohistochemical staining. AKR1C3-silenced stable KYSE170R esophageal cancer cells (KY170R-shAKR1C3) were established. Colony formation assay was employed to evaluate the radiosensitivity of cancer cells, while flow cytometry analysis was utilized to quantify reactive oxygen species (ROS) production in these cells. Additionally, Western blotting was conducted to determine protein expression levels. RESULTS: AKR1C3 protein exhibited significantly higher expression in radioresistant cancer tissue samples compared to radiosensitive samples. AKR1C3 silencing promoted radiosensitivity and ROS production of KYSE170R cells. At 32 h after X-ray radiation, the levels of total and phosphorylated ERK1/2, JNK, and AKT proteins were significantly elevated in KYSE170R-shAKR1C3 cells compared to untransfected KYSE170R cells. The inhibitor of AKR1C3 remarkably enhanced the radiosensitivity of KYSE170R cells. Conversely, treatment with either a MEK inhibitor or an AKT inhibitor significantly increased the radioresistance of KYSE170R-shAKR1C3 cells. CONCLUSIONS: Our results suggest that AKR1C3 mediates radioresistance of KYSE170R cells possibly through MAPK and AKT signaling.
Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase , Neoplasias Esofágicas , Proteínas Proto-Oncogênicas c-akt , Tolerância a Radiação , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/radioterapia , Tolerância a Radiação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase/genética , Espécies Reativas de Oxigênio/metabolismo , Sistema de Sinalização das MAP Quinases , Regulação Neoplásica da Expressão Gênica , Feminino , MasculinoRESUMO
Fatty acid (FA) metabolism plays an important role in the development of nonalcoholic fatty liver disease (NAFLD). However, data on the relationship between circulating FAs and NAFLD risk are limited. This study aims to assess the associations between specific circulating FAs and severe NAFLD risk among the general population. Overall 116 223 participants without NAFLD and other liver diseases from the UK Biobank were enrolled between 2006 and 2010 and were followed up until the end of 2021. Plasma concentrations of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) were analyzed using an NMR-based biomarker profiling platform. Hazard ratios (HRs) and 95% confidence intervals (CIs) of NAFLD risk were estimated using Cox proportional-hazard models adjusted for other potential confounders. During a mean follow-up of 12.3 years, we documented 1394 cases of severe NAFLD. After multivariate adjustment, plasma SFAs and MUFAs were associated with a higher risk of severe NAFLD, whereas plasma n-3 PUFAs, n-6 PUFAs, and linoleic acid (LA) were associated with a lower risk. As compared with the lowest quartile, HRs (95% CIs) of severe NAFLD risk in the highest quartiles were 1.85 (1.45-2.36) for SFAs, 1.74 (1.23-2.44) for MUFAs, 0.79 (0.65-0.97) for n-3 PUFAs, 0.68 (0.48-0.96) for n-6 PUFAs, and 0.73 (0.54-0.99) for LA. The significant relationships were mainly mediated by serum TG for SFAs, HDL-C for MUFAs and n-6 PUFAs, and C-reactive protein for n-3 PUFAs. Plasma SFAs were associated with a more pronounced increase in the risk of severe NAFLD among participants with fewer SFA-associated alleles (P interaction = 0.032). Dietary recommendations for reducing plasma SFAs and MUFAs while increasing n-3 and n-6 PUFAs may be protective for severe NAFLD, which could be mediated by lipid metabolism and inflammation.
Assuntos
Bancos de Espécimes Biológicos , Ácidos Graxos , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Reino Unido/epidemiologia , Estudos Prospectivos , Ácidos Graxos/sangue , Adulto , Idoso , Fatores de Risco , Biomarcadores/sangue , Ácidos Graxos Insaturados/sangue , Biobanco do Reino UnidoRESUMO
INTRODUCTION: To evaluate the alterations in the peripapillary retinal thickness and its risk factors in dry-type high myopia (HM). METHODS: One hundred and twenty eyes in 69 HM subjects were collected from March 2023 to July 2023 with the age, refractive diopter, axial length (AL), posterior scleral staphyloma, type of myopic maculopathy, and peripapillary retinal thickness. Divided into three groups according to the international photo-graphic classification system: Category 0 (C0) with no myopic retinal degenerative lesions, Category 1 (C1) with tessellated fundus, and Category 2 (C2) with diffuse chorioretinal atrophy. Peripapillary retinal thickness was assessed using swept-source optical coherence tomography (SS-OCT) B-scans. All data were analyzed with the SPSS software version 23.0 by one-way ANOVA test among three groups. Linear regression and pearson correlation analysis were used to determine the relationships among measurements. RESULTS: The retinal thickness of the peripapillary was measured from the superior, nasal, inferior, and temporal directions around the optic disc. The superior, nasal, and inferior peripapillary retinal thickness in the C2 group decreased significantly in all three groups. The retinal thicknesses decreased significantly with the increase of AL in the superior, nasal, and inferior. The retinal thicknesses increased significantly with the increase of refractive diopter, except for the temporal sector. The retinal thickness decreased significantly with the increase of age in dry-type HM. There was no significant difference between peripapillary retinal thickness and the wide macular staphyloma. CONCLUSIONS: Individuals in the C2 group had a thinner peripapillary retinal thickness than other groups, except for the temporal sector. The retinal thicknesses of the peripapillary decreased significantly with the increase of AL and increased significantly with the increase of refractive diopter, except for the temporal sector. With the increase of age, the retinal thickness of the peripapillary decreased significantly. Ophthalmologists and HM patients should pay attention to changes in the thickness of the peripapillary retina and the growth of age.
RESUMO
Carbon dots (CDs) with intrinsic bioactivities are candidates for bioimaging and disease therapy due to their diverse bioactivities, high biocompatibility, and multiple functionalities in multimodal theranostics. It is a multidisciplinary research hotspot that includes biology, physics, materials science, and chemistry. This progress report discusses the CDs with intrinsic bioactivities and their applications in multimodal theranostics. The relationship between the synthesis and structure of CDs is summarized and analyzed from a material and chemical perspective. The bioactivities of CDs including anti-tumor, antibacterial, anti-inflammatory etc. are discussed from biological points of view. Subsequently, the optical and electronic properties of CDs that can be applied in the biomedical field are summarized from a physical perspective. Based on the functional review of CDs, their applications in the biomedical field are reviewed, including optical diagnosis and treatment, biological activity, etc. Unlike previous reviews, this review combines multiple disciplines to gain a more comprehensive understanding of the mechanisms, functions, and applications of CDs with intrinsic bioactivities.
RESUMO
We recruited a healthy 44-year-old female and obtained her skin fibroblasts. Subsequently, the induced pluripotent stem cell line was successfully established using non-integrated reprogramming technology. The cell line had a normal karyotype and has been confirmed to have good pluripotency through the detection of pluripotency markers and detection of teratoma formation. This cell line can serve as an effective control for studying the cellular pathological mechanisms of other specific mutations.
RESUMO
The electro-catalytic oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) provides an attractive route to produce 2, 5-furandicarboxylic acid (FDCA) as a substitute for terephthalic acid used in the plastics industry. Herein, we prepared MoNi4 alloy on nickel foam (NF) using a simple hydrothermal method followed by hydrogen reduction. Applied MoNi4/NF as the bifunctional electrodes for the electro-catalytic HMF oxidation reaction (HMFOR) and HER, 98.7% FDCA yield and 97.3% Faraday efficiency (FE) can be achieved even with HMF concentration as high as 200 mM. Notably, no obvious deactivation was observed after ten consecutive cycles. In-situ Raman, XANES and EXAFS results show that the nickel species of MoNi4/NF is first oxidized to Ni3+ species under the applied voltage, and after undergoing the electro-catalytic HMFOR, then reduced to Ni2-δ state (with a valence between 0 and +2) due to the electron-donating effect from Mo. MoNi4/NF with more than one electron transfer between Ni3+ and Ni2-δ during the HMFOR enables it to have excellent electro-catalytic oxidation ability toward HMFOR.
RESUMO
How organisms respond to complex environments is one of the unsolved problems in ecology. Life history patterns of a species provide essential information on how different populations may respond and adapt to environmental changes. Compared to typical seasonal breeders, which have limited distributions, the worldwide distribution of brown rats (Rattus norvegicus) across highly complex and divergent habitats suggests they exhibit exceptional adaptiveness. However, the difference in physiological mechanisms by which brown rats respond and adapt to markedly different environments is seldom investigated. Here, we reveal a significant divergence in reproductive seasonality and environmental responses between two brown rat subspecies: one subspecies, R. n. caraco, lives in the temperate zone, and another subspecies, R. n. norvegicus, lives in the subtropical region. Although R. n. caraco displayed a significantly higher reproductive seasonality than R. n. norvegicus, both subspecies adapted to sub-optimal breeding conditions mainly by regulating the seminal vesicle rather than testis development. Especially in responding to severe winter conditions in high-latitude regions, bodyweight-dependent recovery of testicular development in adults enables R. n. caraco to initiate reproduction more rapidly when conditions are suited. These findings elucidate a regulatory process of how brown rats live as opportunistic breeders by benefiting from enhanced semen production.
RESUMO
Aging is an intricate process involving interactions among multiple factors, which is one of the main risks for chronic diseases, including Alzheimer's disease (AD). As a member of cysteine protease, cathepsin S (CTSS) has been implicated in inflammation across various diseases. Here, we investigated the role of neuronal CTSS in aging and AD started by examining CTSS expression in hippocampus neurons of aging mice and identified a significant increase, which was negatively correlated with recognition abilities. Concurrently, we observed an elevation of CTSS concentration in the serum of elderly people. Transcriptome and fluorescence-activated cell sorting (FACS) results revealed that CTSS overexpression in neurons aggravated brain inflammatory milieu with microglia activation to M1 pro-inflammatory phenotype, activation of chemokine C-X3-C-motif ligand 1 (CX3CL1)-chemokine C-X3-C-motif receptor 1 (CX3CR1) axis and janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) pathway. As CX3CL1 is secreted by neurons and acts on the CX3CR1 in microglia, our results revealed for the first time the role of neuron CTSS in neuron-microglia "crosstalk." Besides, we observed elevated CTSS expression in multiple brain regions of AD patients, including the hippocampus. Utilizing CTSS selective inhibitor, LY3000328, rescued AD-related pathological features in APP/PS1 mice. We further noticed that neuronal CTSS overexpression increased cathepsin B (CTSB) activity, but decreased cathepsin L (CTSL) activity in microglia. Overall, we provide evidence that CTSS can be used as an aging biomarker and plays regulatory roles through modulating neuroinflammation and recognition in aging and AD process.
RESUMO
Cryoelectron microscopy (cryo-EM) clarified the quaternary structure of the DNA complex of coactivator-bound estrogen receptor alpha (ERα), revealing the adjacency of the N-terminal domain (NTD) and C-terminal ligand-binding domain (LBD). ERα-NTD and LBD constitute activation function 1 (AF-1) and activation function 2 (AF-2), respectively. These domains are essential for transcription activation. Their spatial proximity was judged to be essential for ERα to recruit the SRC coactivator proteins. In the present study, we first evaluated untethered free ERα-NTD(AF-1) [residues 1-180] and its-truncated desNTD(AF-1)-ERα [residues 181-595] in a luciferase reporter gene assay. ERα-NTD(AF-1) was completely inactive, whereas desNTD(AF-1)-ERα exhibited 66% activity of wild-type ERα. Surprisingly, ERα-NTD(AF-1) was found to inhibit desNTD(AF-1)-ERα markedly. Therefore, assuming that ERα-NTD(AF-1) must also inhibit wild-type full-length ERα, we co-expressed ERα-NTD(AF-1) and full-length ERα. As expected, ERα-NTD(AF-1) inhibited ERα in a dose-dependent manner, but non-competitively for 17ß-estradiol. When their intracellular transport was examined immunocytochemically, ERα-NTD(AF-1) showed a distinct translocation from the cytoplasm to the nucleus, despite being expressed solely in the cytoplasm without full-length ERα. This nuclear translocation was attributable to a direct interaction between ERα-NTD(AF-1) and full-length ERα consisting of the nuclear localization signal. The present results demonstrated that, in full-length ERα, the N-terminally tethered NTD(AF-1) domain collaborates with the C-terminal LBD(AF-2) for coactivator recruitment.
Assuntos
Receptor alfa de Estrogênio , Ligação Proteica , Domínios Proteicos , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/química , Humanos , Ligantes , Núcleo Celular/metabolismoRESUMO
BACKGROUND: The role of plant-based dietary patterns in preventing cardiovascular disease (CVD) among individuals with prediabetes and diabetes remains unclear. We aimed to evaluate the associations of plant-based diet index (PDI), healthful PDI (hPDI), and unhealthful PDI (uPDI) with cardiovascular disease (CVD) risk and explore potential contributing factors among people with prediabetes and diabetes. METHODS: A total of 17,926 participants with prediabetes and 7798 with diabetes were enrolled from the UK Biobank between 2006 and 2010 and followed until the end of 2020. We calculated the PDI, hPDI, and uPDI based on 18 major food groups including plant-based foods and animal-based foods and applied Cox proportional hazard models to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for CVD risk related to PDI, hPDI, and uPDI. Decomposition analysis was performed to assess the role of dietary components, and mediation analysis was performed to assess the potential mediating role of serum biomarkers underlying these associations. RESULTS: A total of 2324 CVD events were documented among individuals with prediabetes, while 1461 events occurred among patients with diabetes. An inverse association was found between hPDI and CVD risk among individuals with prediabetes (HR T3 vs. T1 = 0.88, 95% CI = 0.79-0.98, Ptrend = 0.025) but not those with diabetes. A positive association was found between uPDI and CVD risk among individuals with prediabetes (HR T3 vs. T1 = 1.17, 95% CI = 1.05-1.30, Ptrend = 0.005) and those with diabetes (HR T3 vs. T1 = 1.14, 95% CI = 1.00-1.29, Ptrend = 0.043). High-sugar-sweetened beverages (SSB) intake accounted for 35% of the hPDI-CVD association and 15% of the uPDI-CVD association among individuals with prediabetes, whereas low intake of whole grain accounted for 36% of the association among patients with diabetes. Elevated cystatin C levels explained the largest proportion of the association between uPDI and CVD risk among individuals with prediabetes (15%, 95% CI = 7-30%) and diabetes (44%, 95% CI = 9-86%). CONCLUSIONS: Adherence to an unhealthy plant-based diet is associated with a higher CVD risk in people with prediabetes or diabetes, which may be partially attributed to low consumption of whole grains, high intake of SSB, and high blood cystatin C levels.
Assuntos
Doenças Cardiovasculares , Dieta Vegetariana , Estado Pré-Diabético , Humanos , Estado Pré-Diabético/epidemiologia , Doenças Cardiovasculares/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Diabetes Mellitus/epidemiologia , Reino Unido/epidemiologia , Fatores de Risco , Dieta Baseada em PlantasRESUMO
The extensive utilization of second-generation anticoagulant rodenticides (SGARs) has raised concerns regarding non-target animal safety and environmental contamination. It is essential to assess the anticoagulant resistance level in rodent populations and prioritize the use of relative low toxic first-generation anticoagulant rodenticides (FGARs) in susceptible rodent populations. Mutations in the vitamin K epoxide reductase complex subunit 1 (Vkorc1) gene confer anticoagulant resistance in Norway rats. However, the Vkorc1 polymorphisms remain unclear in most Norway rat populations in China although anticoagulant rodenticides have been widely used in China since the 1980s. Analysis of the Vkorc1 polymorphisms in 489 rats across China, combined with in silico binding affinity analysis, revealed three potential resistance mutations A26T, C96Y, and A140T at three distinct locations. In the remaining locations, Vkorc1 resistance mutations were absent, indicating that the FGARs could be effective in these areas. Additional evolutionary analysis of different Vkorc1 mutations suggested that the three missense mutations identified in China might have evolved independently as de novo mutations, and the resistance mutations in Europe are unlikely to be pre-existing variations in China. Further analysis of Vkorc1 haplotypes among European resistant rat populations is essential for understanding the origin of these resistance mutations. These findings emphasize the importance of customizing rodent control strategies in China based on regional resistance levels and gaining insights into the origins of Vkorc1 mutations for more effective rodent management strategies.
RESUMO
The pursuit of environmental friendliness, efficiency, and durability is paramount in the realm of flame retardant textile modification. Therefore, an innovative approach was designed to develop a gallic acid-derived intumescent flame retardant (GADPP), which contained reactive (-P(=O)(O-NH4+)2) and (-P(=O)(OCH2CH3)2) groups, facilitating functional modification of lyocell fabric. The GADPP modification effectively improved both flame retardancy and ultraviolet (UV) resistance of lyocell fabric. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy has substantiated the uniform distribution and covalent bond grafting of GADPP onto the fabric. Remarkably, even after 50 laundering cycles (LCs), the limiting oxygen index and UV protection factor values of lyocell fabric modified with 30 wt% GADPP remained at 29.8 % and 117.69, respectively. These results highlighted the synergistic effect of GADPP on enhancing the flame retardancy and UV resistance of lyocell fabric. Furthermore, this multi-functional modification strategy provides a sustainable path for the enduring enhancement of flame retardant and UV protective properties in lyocell fabrics.
Assuntos
Retardadores de Chama , Têxteis , Raios Ultravioleta , Biomassa , Ácido Gálico/química , Espectroscopia de Infravermelho com Transformada de Fourier , Celulose/química , Lignina/químicaRESUMO
Regulating the selective generation of reactive oxygen species (ROS) is a significant challenge in the field of photocatalytic oxidation, with successful approaches still being limited. Herein, we present a strategy to selectively generate singlet oxygen (1O2) and superoxide radicals (O2â¢-) by tuning the dimensionality of porphyrin-based covalent organic frameworks (COFs). The transformation of COFs from three-dimensional (3D) solids to two-dimensional (2D) sheets was achieved through the reversible protonation of the imine bond. Upon irradiation, both bulk and thin-layer COF-367 can transfer energy to O2 to generate 1O2. However, thin-layer COF-367 exhibited a superior performance compared to its bulk counterpart in activating O2 to form the O2â¢- radicals via electron transfer. After excluding the influences of the band structure, O2 adsorption energy, and frontier orbital composition attributed to the dimensionality of the COFs, it is reasonably speculated that the variance in ROS generation arises from the differential exposure ratios of the active surfaces, leading to distinct reaction pathways between the carrier and O2. This study is the first to explore the modulation mechanism of COF dimensionality on the activation of the O2 pathway, underscoring the importance of considering COF dimensionality in photocatalytic reactions.
RESUMO
Inorganic NiOx has attracted tremendous attention in organic-inorganic hybrid perovskite solar cells (PSCs) in recent years but is relatively less used in all-inorganic PSCs. In this study, we have discovered and confirmed the detrimental interfacial reaction between NiOx and DMAI-containing CsPbI3 inorganic perovskites. Thus, a self-assembled monolayer, Br-2PACz, is employed to modify the NiOx surface to obstruct the adverse interfacial reaction and further improve the device performance. The results demonstrate that Br-2PACz modification on NiOx can also improve interface contact, perovskite film morphology, and energy level alignments. Consequently, a champion power conversion efficiency (PCE) of 19.34% with a high open-circuit voltage (VOC) of 1.15 V is obtained for inverted NiOx/Br-2PACz-based CsPbI3 PSCs compared to the reference NiOx-based PSC with a moderate PCE of 15.16% (VOC 1.05 V). Moreover, the stabilities of both CsPbI3 films and devices exhibited significant enhancement after Br-2PACz modification. The unpacked PSCs could maintain 80, 73, and 89% of the initial efficiency after aging in 30-35% RH for 960 h, heating at 60 °C for 48 h, and continuous illumination for 284 h, respectively, highly superior to the reference devices. Our work offers a facile and effective approach for developing high-performance inverted NiOx-based CsPbI3 PSCs.
RESUMO
Neonatal lupus erythematosus (NLE) is a rare acquired autoimmune disease associated with the entry of maternal antibodies into the fetal circulation via the placenta during pregnancy. Macrophage activation syndrome (MAS) is a severe hyperinflammatory disease. Herein, we present a case of NLE with MAS accompanied by fever, convulsions, and rash. High-dose gamma globulin and non-shock doses of steroids can be used as a first-line treatment for NLE with MAS. Fever can be a clinical manifestation of NLE, especially cutaneous lupus. Rash recession could be used to judge whether the disease is effectively controlled by treatment.
RESUMO
Porphyrins-based porous organic polymers were widely used in photocatalytic oxidation under visible light owing to their superiority in the activation of oxygen. In contrast, the efficiency is usually limited due to the fast recombination and slow electron transfer. Herein, we report the use of a trioporphyrins-based covalent triazine framework (Por-CTF) as visible-light-active photocatalyst for the coupling oxidative of amines to imines at room temperature. By incorporating the π-conjugated porphyrin building block led to the enhanced electron transport between molecules, and the extended recombination time of excited electrons. The photocatalytic efficiency of Por-CTF is superior to that of polymer in absence of triazine framework (POP-TSP), which was prepared by radical polymerization using tetra-(4-vinylphenyl) porphyrin as monomer. Por-CTF catalyst presented excellent efficiency for various primary amines and stability. This work provides a reasonable guidance of catalyst molecular structure design for enhancing efficiency in the photocatalytic oxidation.
RESUMO
Mixed tin-lead perovskite solar cells (PSCs) have garnered much attention for their ideal bandgap and high environmental research value. However, poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS), widely used as a hole transport layer (HTL) for Sn-Pb PSCs, results in unsatisfactory power conversion efficiency (PCE) and long-term stability of PSCs due to its acidity and moisture absorption. A synergistic strategy by incorporating histidine (HIS) into the PEDOT: PSS HTL is applied to simultaneously regulate the nucleation and crystallization of perovskite (PVK). HIS neutralizes the acidity of PEDOT: PSS and enhances conductivity. Especially, the coordination of the CâN and -COO- functional groups in the HIS molecule with Sn2+ and Pb2+ induces vertical growth of PVK film, resulting in the release of residual surface stress. Additionally, this strategy also optimizes the energy level alignment between the perovskite layer and the HTL, which improves charge extraction and transport. With these cooperative effects, the PCE of Sn-Pb PSCs reaches 21.46% (1 sun, AM1.5), maintaining excellent stability under a nitrogen atmosphere. Hence, the buried interface approach exhibits the potential for achieving high-performance and stable Sn-Pb PSCs.
RESUMO
BACKGROUND: Cereal grains are rich in carbohydrates and could trigger a hyperglycemic response which is closely linked to blood pressure status. We aim to examine the associations between the consumption of cereals with different cooking methods and hypertension risk. METHODS: We conducted a prospective analysis utilizing the nationwide data of 11,080 adult participants who were free of hypertension at baseline. Cereal intake was assessed using 3-day 24 h dietary recalls with a weighing technique. Hypertension incidence was identified in adherence with the Seventh Joint National Commission guidelines during the follow-up. Cox proportional hazards regression models were used to extrapolate hazard ratios associated with hypertension risk. RESULTS: Over an average follow-up span of 7 years (77,560 person-years), we identified 3643 new hypertension cases. The intake of total, fried, and baked cereals was associated with 15%, 20%, and 20% higher risk of hypertension, respectively. Whole grain consumers had an 8% lower risk of hypertension compared with non-consumers, while total refined grain consumers showed no significant association. Replacing one daily serving of fried or baked cereals with an equivalent serving of boiled cereals was related to a 28% or 14% lower risk, respectively. CONCLUSIONS: Total, fried, and baked cereal consumption was positively associated with hypertension risk, while consuming whole grains was related to a lower risk. Modifying cooking methods from frying or baking to boiling for cereals may be beneficial to lower risk. The current study underscores the significance of considering both the degree of processing and cooking methods applied to cereals in addressing hypertension prevention and management.