Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Phytother Res ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748620

RESUMO

Diosmetin, a natural occurring flavonoid, is primarily found in citrus fruits, beans, and other plants. Diosmetin demonstrates a variety of pharmacological activities, including anticancer, antioxidant, anti-inflammatory, antibacterial, metabolic regulation, cardiovascular function improvement, estrogenic effects, and others. The process of literature search was done using PubMed, Web of Science and ClinicalTrials databases with search terms containing Diosmetin, content, anticancer, anti-inflammatory, antioxidant, pharmacological activity, pharmacokinetics, in vivo, and in vitro. The aim of this review is to summarize the in vivo, in vitro and clinical studies of Diosmetin over the last decade, focusing on studies related to its anticancer, anti-inflammatory, and antioxidant activities. It is found that DIO has significant therapeutic effects on skin and cardiovascular system diseases, and its research in pharmacokinetics and toxicology is summarized. It provides the latest information for researchers and points out the limitations of current research and areas that should be strengthened in future research, so as to facilitate the relevant scientific research and clinical application of DIO.

2.
Nat Commun ; 15(1): 2238, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472213

RESUMO

Soft magnetic materials with stable permeability up to hundreds of megahertz (MHz) are urgently needed for integrated transformers and inductors, which are crucial in the more-than-Moore era. However, traditional frequency-stable soft magnetic ferrites suffer from low saturation magnetization and temperature instability, making them unsuitable for integrated circuits. Herein, we fabricate a frequency-stable soft magnetic composite featuring a magnetic vortex structure via cold-sintering, where ultrafine FeSiAl particles are magnetically isolated and covalently bonded by Al2SiO5/SiO2/Fe2(MoO4)3 multilayered heterostructure. This construction results in an ultrastable permeability of 13 up to 1 gigahertz (GHz), relatively large saturation magnetization of 105 Am2/kg and low coercivity of 48 A/m, which we ascribe to the elimination of domain walls associated with almost uniform single-vortex structures, as observed by Lorentz transmission electron microscopy and reconstructed by micromagnetic simulation. Moreover, the ultimate compressive strength has been simultaneously increased up to 337.1 MPa attributed to the epitaxially grown interfaces between particles. This study deepens our understanding on the characteristics of magnetic vortices and provides alternative concept for designing integrated magnetic devices.

3.
Pigment Cell Melanoma Res ; 37(3): 411-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411373

RESUMO

Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults. Although primary UM can be effectively controlled, a significant proportion of cases (40% or more) eventually develop distant metastases, commonly in the liver. Metastatic UM remains a lethal disease with limited treatment options. The initiation of UM is typically attributed to activating mutations in GNAQ or GNA11. The elucidation of the downstream pathways such as PKC/MAPK, PI3K/AKT/mTOR, and Hippo-YAP have provided potential therapeutic targets. Concurrent mutations in BRCA1 associated protein 1 (BAP1) or splicing factor 3b subunit 1 (SF3B1) are considered crucial for the acquisition of malignant potential. Furthermore, in preclinical studies, actionable targets associated with BAP1 loss or oncogenic mutant SF3B1 have been identified, offering promising avenues for UM treatment. This review aims to summarize the emerging targeted and epigenetic therapeutic strategies for metastatic UM carrying specific driver mutations and the potential of combining these approaches with immunotherapy, with particular focus on those in upcoming or ongoing clinical trials.


Assuntos
Melanoma , Mutação , Neoplasias Uveais , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/terapia , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/terapia , Mutação/genética , Terapia de Alvo Molecular , Metástase Neoplásica , Animais , Imunoterapia
4.
Nat Commun ; 15(1): 1497, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374257

RESUMO

Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe3C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe3C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss (RLmin) is -52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB≤-10 dB) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials.

5.
Mater Horiz ; 11(4): 995-1007, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38047955

RESUMO

Transcutaneous energy-harvesting technology based on ultrasound-driven piezoelectric nanogenerators is the most promising technology in medical and industrial applications. Based on ultrasonic coupling effects at the interfaces, the interfacial architecture is a critical parameter to attain desirable electromechanical properties of nanocomposites. Herein, we successfully synthesized core-conductive shell-structured BaTiO3@Carbon [BT@Carbon] nanoparticles [NPs] as nanofillers to design implantable poly(vinylidenefluoride-co-chlorotrifluoroethylene)/BT@Carbon [P(VDF-CTFE)/BT@Carbon] piezoelectric nanogenerators (PENGs) and actuators for harvesting ultrasound (US) underneath the skin. For US-driven PENGs, the electrons and holes are generated not only from the interfaces between the BT@Carbon NPs and the matrix, but also from the dipoles vibrating in the smaller lamellae of ferroelectric ß-phase crystals in poled nanocomposites. Remarkably, P(VDF-CTFE)/BT@Carbon piezoelectric nanogenerators could attain an extraordinary output power of 521 µW cm-2 under ultrasound stimulation, which is far greater than that of force-induced PVDF-based nanogenerators and other ultrasound-driven triboelectric generators. Furthermore, the US-PENG actuator system, which is composed of an amplifier and a microcontroller, could efficiently convert ultrasonic energy into electricity or instructions to switch on/off small electronics in the tissues and organs of mice. Finally, the nanocomposite-based US-driven PENGs have a good biocompatibility, with no cytotoxicity or immune response in vivo, indicating their potential for developing wireless power generators and actuators for medical implant devices.

6.
Nanoscale ; 15(48): 19586-19597, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38015611

RESUMO

Spinel ferrites have drawn intensive attention because of their adjustable magnetic properties by ion doping, among which calcium (Ca) is an essential dopant that is widely employed in massive production. However, its exact lattice occupation and relationship with intrinsic magnetic properties remain unclear. Here, we successfully prepared Ca-doped cobalt ferrite (CoFe2O4) nanoparticles by electrospinning. Ca2+ is observed to occupy both the tetrahedral Fe site and the octahedral Co site using spherical aberration correction transmission electron microscopy (TEM) and prefers to occupy the octahedral site at a high doping level. Such dual occupation behavior affects the tetrahedral and octahedral sublattices differently, resulting in nonmonotonic saturation magnetization variation, reduced magnetocrystalline anisotropy and negative magnetization in the zero field cooling (ZFC) process. By controlling the Ca doping amount, increased saturation magnetization and reduced coercivity can be obtained simultaneously. Our findings establish the relationship between the atomic-scale structural change and the macroscopic magnetic properties of spinel ferrites, promoting the development of new ferrite materials.

7.
Nanotechnology ; 35(9)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37995378

RESUMO

Gallium oxide (Ga2O3) possesses a band gap of approximately 4.9 eV, aligning its detection wavelength within the solar-blind region, making it an ideal semiconductor material for solar-blind photodetectors. This study aims to enhance the performance of Ga2O3ultraviolet (UV) detectors by pre-depositing a Ga2O3seed layer on ac-plane sapphire substrate. The x-ray diffraction and x-ray photoelectron spectroscopy analyses validated that the deposited films, following high-temperature annealing, comprisedß-Ga2O3. Comparing samples with and without a 20 nm seed layer, it was found that the former exhibited fewer oxygen defects and substantially improved crystal quality. The incorporation of the seed layer led to the realization of detectors with remarkably low dark current (≤15.3 fA). Moreover, the photo-to-dark current ratio was enhanced by 30% (surpassing 1.3 × 104) and the response/recovery time reduced to 0.9 s/0.01 s, indicating faster performance. Furthermore, these detectors demonstrated higher responsivity (4.8 mA W-1), improved detectivity (2.49 × 1016Jones), and excellent solar-blind characteristics. This study serves as a foundational stepping toward achieving high-qualityß-Ga2O3thin film and UV detector arrays.

8.
Front Med (Lausanne) ; 10: 1267512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034530

RESUMO

Introduction: Early stable deep molecular response (DMR) to nilotinib is associated with goal of treatment-free remission (TFR) in patients with chronic-phase chronic myeloid leukemia (CML-CP). It is important to early distinguish between patients who can achieve a DMR and those who are fit for TFR. Methods: We performed a multicenter study to explore the early cumulative MR4.5 rate at 18 months with nilotinib in patients with newly diagnosed CML-CP (ND-CML-CP) in China. Of the 29 institutes, 106 patients with ND-CML-CP received nilotinib (300 mg BID). Results and discussion: The cumulative MR4.5 rate of nilotinib treatment at 18 months was 69.8% (74/106). The cumulative MMR and MR4.0 rates for nilotinib at 18 months were 94.3% (100/106) and 84.9% (90/106), respectively. Patients with an ultra-early molecular response (u-EMR) at 6 weeks were not significantly different in obtaining DMR or MMR by 24 months compared with those without u-EMR (p = 0.7584 and p = 0.9543, respectively). Our study demonstrated that nilotinib treatment in patients with ND-CML-CP contributed to obtain high early MR4.5.

9.
Water Sci Technol ; 88(8): 1982-2001, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37906454

RESUMO

For the low efficiency and large loss of cascade pumping stations, aiming to maximize system efficiency, an optimized scheduling model of cascade pumping stations is established with consideration of multiple constraints, and the optimal scheduling method based on the improved sparrow search algorithm (BSSA) is proposed. The BSSA is initialized by the Bernoulli chaotic map to solve the insufficient initial diversity of the sparrow search algorithm (SSA). The random boundary strategy is introduced to avoid local optimum when dealing with the scheduling problem of pumping stations. The performance and improvement strategy of BSSA are verified by eight benchmark functions. Results show that BSSA has better convergence accuracy and faster speed. BSSA is applied to a three-stage pumping station considering three flow conditions, and compared with the current scheme, particle swarm optimization and genetic algorithm optimization schemes, the operation efficiency of SSA can be increased by 0.72-0.96%, and operation cost can be reduced by ¥263,000/a-¥363,300/a. On this basis, the improvement of 0.04-0.30% and ¥14,800/a-¥109,900/a can be further achieved by the BSSA, which confirms the feasibility and effectiveness of BSSA to solve the pumping station optimal scheduling problem. The findings present useful reference for the optimized scheduling of pumping station system.


Assuntos
Algoritmos , Benchmarking , Água Subterrânea
10.
Viruses ; 15(8)2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37632045

RESUMO

Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Citomegalovirus/genética , RNA Circular/genética , Transcriptoma , MicroRNAs/genética , RNA Mensageiro
11.
PLoS One ; 18(6): e0285699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267400

RESUMO

The aim of this article is to explore the impact of housing investment on household entrepreneurship. Using survey data from China and employing a Probit model, we examine three aspects of housing status and innovatively subdivide household entrepreneurship into agricultural entrepreneurship and business entrepreneurship. The results show that households with higher housing investment are less likely to become agricultural entrepreneurs, but more likely to start a new business. Households with full-owned housing enjoy a higher likelihood to become business entrepreneurs. However, other ownerships have no relation with the choice of entrepreneurship. More housing loans discourage entrepreneurial activities. One exception is that bank loan raises the chance of being agricultural entrepreneurs. Households who build their own houses have a higher agricultural entrepreneurship. Buying market price houses encourages households to be business entrepreneurs. Low-price house and inherited house prevent households from being business entrepreneurs.


Assuntos
Empreendedorismo , Habitação , Comércio , Emprego , China
12.
Materials (Basel) ; 16(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37374561

RESUMO

Transmission electron microscopy (TEM) is indispensable to reveal the cellular nanostructure of the 2:17-type Sm-Co based magnets which act as the first choice for high-temperature magnet-associated devices. However, structural deficiencies could be introduced into the TEM specimen during the ion milling process, which would provide misleading information to understand the microstructure-property relationship of such magnets. In this work, we performed a comparative investigation of the microstructure and microchemistry between two TEM specimens prepared under different ion milling conditions in a model commercial magnet Sm13Gd12Co50Cu8.5Fe13Zr3.5 (wt.%). It is found that additional low-energy ion milling will preferably damage the 1:5H cell boundaries, while having no influence on the 2:17R cell phase. The structure of cell boundary transforms from hexagonal into face-centered-cubic. In addition, the elemental distribution within the damaged cell boundaries becomes discontinuous, segregating into Sm/Gd-rich and Fe/Co/Cu-rich portions. Our study suggested that in order to reveal the true microstructure of the Sm-Co based magnets, the TEM specimen should be carefully prepared to avoid structural damage and artificial deficiencies.

13.
ACS Appl Mater Interfaces ; 15(2): 3307-3316, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36596237

RESUMO

Van der Waals semiconductors have been really confirmed in two-dimensional (2D) layered systems beyond the traditional limits of lattice-matching requirements. The extension of this concept to the 1D atomic level may generate intriguing physical functionalities due to its non-covalent bonding surface. However, whether the curvature of the lattice in such rolled-up structures affects their optoelectronic features or the performance of devices established on them remains an open question. Here, MoS2-based nanoscrolls were obtained by virtue of an alkaline solution-assisted method and the 0D/1D (BaTiO3/MoS2) strategy to tune their optoelectronic properties and improve the light sensing performance was explored. The capillary force generated by a drop of NaHCO3 solution could drive the delamination of nanosheets from the underlying substrate and a spontaneous rolling-up process. The package of BaTiO3 particles in MoS2 nanoscrolls has been evident by TEM image, and the optical characterizations were mirrored via micro-Raman spectroscopy and photoluminescence. These bare MoS2 nanoscrolls reveal a reduced photoresponse compared to the plane structures due to the curvature of the lattice. However, such BaTiO3/MoS2 nanoscrolls exhibit a significantly improved photodetection (Rhybrid = 73.9 A/W vs Ronly = 1.1 A/W and R2D = 1.5 A/W at 470 nm, 0.58 mW·cm-2), potentially due to the carrier extraction/injection occurring between BaTiO3 and MoS2. This study thereby provides an insight into 1D van der Waals material community and demonstrates a general approach to fabricate high-performance 1D van der Waals optoelectronic devices.

14.
Biomater Res ; 26(1): 64, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435809

RESUMO

BACKGROUND: It is highly desirable to develop new therapeutic strategies for gastric cancer given the low survival rate despite improvement in the past decades. Cadherin 17 (CDH17) is a membrane protein highly expressed in cancers of digestive system. Nanobody represents a novel antibody format for cancer targeted imaging and drug delivery. Nanobody targeting CHD17 as an imaging probe and a delivery vehicle of toxin remains to be explored for its theragnostic potential in gastric cancer. METHODS: Naïve nanobody phage library was screened against CDH17 Domain 1-3 and identified nanobodies were extensively characterized with various assays. Nanobodies labeled with imaging probe were tested in vitro and in vivo for gastric cancer detection. A CDH17 Nanobody fused with toxin PE38 was evaluated for gastric cancer inhibition in vitro and in vivo. RESULTS: Two nanobodies (A1 and E8) against human CDH17 with high affinity and high specificity were successfully obtained. These nanobodies could specifically bind to CDH17 protein and CDH17-positive gastric cancer cells. E8 nanobody as a lead was extensively determined for tumor imaging and drug delivery. It could efficiently co-localize with CDH17-positive gastric cancer cells in zebrafish embryos and rapidly visualize the tumor mass in mice within 3 h when conjugated with imaging dyes. E8 nanobody fused with toxin PE38 showed excellent anti-tumor effect and remarkably improved the mice survival in cell-derived (CDX) and patient-derived xenograft (PDX) models. The immunotoxin also enhanced the anti-tumor effect of clinical drug 5-Fluorouracil. CONCLUSIONS: The study presents a novel imaging and drug delivery strategy by targeting CDH17. CDH17 nanobody-based immunotoxin is potentially a promising therapeutic modality for clinical translation against gastric cancer.

15.
Nanomaterials (Basel) ; 12(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296869

RESUMO

The acetone-sensing performance of BiFeO3 is related to structural phase transformation, morphology and band gap energy which can be modulated by rare-earth ions doping. In this work, Bi1-xErxFeO3 nanoparticles with different amounts of Er doping were synthesized via the sol-gel method. The mechanism of Er doping on acetone-sensing performance of Bi1-xErxFeO3 (x = 0, 0.05, 0.1 and 0.2) sensors was the focus of the research. The optimal working temperature of Bi0.9Er0.1FeO3 (300 °C) was decreased by 60 °C compared to BiFeO3 (360 °C). The Bi0.9Er0.1FeO3 sample demonstrated the optimal response to 100 ppm acetone (43.2), which was 4.8 times that of pure BFO at 300 °C. The primary reason, which enhances the acetone-sensing performance, could be the phase transformation induced by Er doping. The lattice distortions induced by phase transformation are favorable to increasing the carrier concentration and mobility, which will bring more changes to the hole-accumulation layer. Thus, the acetone-sensing performance of Bi0.9Er0.1FeO3 was improved.

16.
PLoS Pathog ; 18(9): e1010794, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070294

RESUMO

Influenza virus has the ability to circumvent host innate immune system through regulating certain host factors for its effective propagation. However, the detailed mechanism is still not fully understood. Here, we report that a host sphingolipid metabolism-related factor, sphingosine kinase 2 (SPHK2), upregulated during influenza A virus (IAV) infection, promotes IAV infection in an enzymatic independent manner. The enhancement of the virus replication is not abolished in the catalytic-incompetent SPHK2 (G212E) overexpressing cells. Intriguingly, the sphingosine-1-phosphate (S1P) related factor HDAC1 also plays a crucial role in SPHK2-mediated IAV infection. We found that SPHK2 cannot facilitate IAV infection in HDAC1 deficient cells. More importantly, SPHK2 overexpression diminishes the IFN-ß promoter activity upon IAV infection, resulting in the suppression of type I IFN signaling. Furthermore, ChIP-qPCR assay revealed that SPHK2 interacts with IFN-ß promoter through the binding of demethylase TET3, but not with the other promoters regulated by TET3, such as TGF-ß1 and IL6 promoters. The specific regulation of SPHK2 on IFN-ß promoter through TET3 can in turn recruit HDAC1 to the IFN-ß promoter, enhancing the deacetylation of IFN-ß promoter, therefore leading to the inhibition of IFN-ß transcription. These findings reveal an enzymatic independent mechanism on host SPHK2, which associates with TET3 and HDAC1 to negatively regulate type I IFN expression and thus facilitates IAV propagation.


Assuntos
Influenza Humana , Interferon beta , Fosfotransferases (Aceptor do Grupo Álcool) , Humanos , Vírus da Influenza A , Influenza Humana/enzimologia , Interferon beta/genética , Interferon beta/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Replicação Viral
17.
Nanoscale ; 14(39): 14750-14759, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36173260

RESUMO

The growth of metal nanostructures induced by surface plasmons has attracted widespread attention and provides a wide range of applications in the development of plasmonic nanochemistry, biosensors, photoelectrochemical coupling reactions, etc. Herein, a simple method is reported for the fabrication of Ag nanoflakes induced by the surface plasma on two-dimensional periodic nanopatterned arrays with the aid of 4-MBA molecules. The light radiation, molecules, and environmental gases are selected to track the formation mechanism of Ag nanoflakes. The in situ Raman observations and theoretical analyses confirm that small aromatic molecules with carboxyl groups play important roles in Ag nanoflake formation derived by localized surface plasmon resonance (LSPR)-driven carriers, which provide profound insights into the study of LSPR-driven carriers, participating in chemical reactions and the reconstruction of dense hot spots in nanogaps.

18.
Pharmacol Res ; 184: 106464, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36162600

RESUMO

Uveal melanoma (UM) is the most common intraocular cancer in adults. UMs are usually initiated by a mutation in GNAQ or GNA11 (encoding Gq or G11, respectively), unlike cutaneous melanomas (CMs), which usually carry a BRAF or NRAS mutation. Currently, there are no clinically effective targeted therapies for UM carrying Gq/11 mutations. Here, we identified a causal link between Gq activating mutations and hypersensitivity to bromodomain and extra-terminal (BET) inhibitors. BET inhibitors transcriptionally repress YAP via BRD4 regardless of Gq mutation status, independently of Hippo core components LATS1/2. In contrast, YAP/TAZ downregulation reduces BRD4 transcription exclusively in Gq-mutant cells and LATS1/2 double knockout cells, both of which are featured by constitutively active YAP/TAZ. The transcriptional interdependency between BRD4 and YAP identified in Gq-mutated cells is responsible for the preferential inhibitory effect of BET inhibitors on the growth and dissemination of Gq-mutated UM cells compared to BRAF-mutated CM cells in both culture cells and animal models. Our findings suggest BRD4 as a viable therapeutic target for Gq-driven UMs that are addicted to unrestrained YAP function.


Assuntos
Melanoma , Proteínas Nucleares , Animais , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Uveais
19.
Front Oncol ; 12: 892192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651812

RESUMO

Aim: To evaluate the feasibility of computed tomography (CT) - derived measurements of body composition parameters to predict the risk factor of non-objective response (non-OR) in patients with hepatocellular carcinoma (HCC) undergoing anti-PD-1 immunotherapy and hepatic artery infusion chemotherapy (immune-HAIC). Methods: Patients with histologically confirmed HCC and treated with the immune-HAIC were retrospectively recruited between June 30, 2019, and July 31, 2021. CT-based estimations of body composition parameters were acquired from the baseline unenhanced abdominal CT images at the level of the third lumbar vertebra (L3) and were applied to develop models predicting the probability of OR. A myosteatosis nomogram was built using the multivariate logistic regression incorporating both myosteatosis measurements and clinical variables. Receiver operating characteristic (ROC) curves assessed the performance of prediction models, including the area under the curve (AUC). The nomogram's performance was assessed by the calibration, discrimination, and decision curve analyses. Associations among predictors and gene mutations were also examined by correlation matrix analysis. Results: Fifty-two patients were recruited to this study cohort, with 30 patients having a OR status after immune-HAIC treatment. Estimations of myosteatosis parameters, like SM-RA (skeletal muscle radiation attenuation), were significantly associated with the probability of predicting OR (P=0.007). The SM-RA combined nomogram model, including serum red blood cell, hemoglobin, creatinine, and the mean CT value of visceral fat (VFmean) improved the prediction probability for OR disease with an AUC of 0.713 (95% CI, 0.75 to 0.95) than the clinical model nomogram with AUC of 0.62 using a 5-fold cross-validation methodology. Favorable clinical potentials were observed in the decision curve analysis. Conclusions: The CT-based estimations of myosteatosis could be used as an indicator to predict a higher risk of transition to the Non-OR disease state in HCC patients treated with immune-HAIC therapy. This study demonstrated the therapeutic relevance of skeletal muscle composition assessments in the overall prediction of treatment response and prognosis in HCC patients.

20.
Natl Sci Rev ; 9(6): nwac041, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35677225

RESUMO

Multi-metallic nanoparticles have been proven to be an efficient photothermal conversion material, for which the optical absorption can be broadened through the interband transitions (IBTs), but it remains a challenge due to the strong immiscibility among the repelling combinations. Here, assisted by an extremely high evaporation temperature, ultra-fast cooling and vapor-pressure strategy, the arc-discharged plasma method was employed to synthesize ultra-mixed multi-metallic nanoparticles composed of 21 elements (FeCoNiCrYTiVCuAlNbMoTaWZnCdPbBiAgInMnSn), in which the strongly repelling combinations were uniformly distributed. Due to the reinforced lattice distortion effect and excellent IBTs, the nanoparticles can realize an average absorption of >92% in the entire solar spectrum (250 to 2500 nm). In particular, the 21-element nanoparticles achieve a considerably high solar steam efficiency of nearly 99% under one solar irradiation, with a water evaporation rate of 2.42 kg m-2 h-1, demonstrating a highly efficient photothermal conversion performance. The present approach creates a new strategy for uniformly mixing multi-metallic elements for exploring their unknown properties and various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA