Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
1.
Neurorehabil Neural Repair ; : 15459683241268537, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39104197

RESUMO

BACKGROUND: Patients with poststroke pusher syndrome (PS) require longer duration of rehabilitation and more supplemental care after discharge. Effective treatment of PS remains a challenge. The role of repetitive transcranial magnetic stimulation (rTMS) for PS has not been examined. OBJECTIVE: Assess the efficacy of rTMS for patients with poststroke PS in reducing pushing behavior, enhancing motor recovery and improving mobility. METHODS: A randomized, patient- and assessor-blinded sham-controlled trial with intention-to-treat analysis was conducted. Thirty-four eligible patients with poststroke PS were randomly allocated to receive either rTMS or sham rTMS for 2 weeks. Pushing behavior on the Burke lateropulsion scale and scale for contraversive pushing, motor function on Fugl-Meyer assessment scale-motor domain (FMA-m) and mobility on modified Rivermead mobility index were measured at baseline, 1 and 2 weeks after intervention. Repeated-measures analysis of covariance was used for data analysis. RESULTS: There was no significant interaction between intervention and time on Burke lateropulsion scale (F = 2.747, P = .076), scale for contraversive pushing (F = 1.583, P = .214), or change of modified Rivermead mobility index (F = 1.183, P = .297). However, a significant interaction between intervention and time was observed for FMA-m (F = 5.464, P = .019). Post hoc comparisons of FMA-m show better improvement in rTMS group with mean differences of 12.7 (95% CI -7.3 to 32.7) and 15.7 (95% CI -4.6 to 36.0) at post-treatment week 1 and week 2 respectively. CONCLUSIONS: rTMS did not demonstrate significant efficacy in improving pushing behavior and mobility in patients with PS. However, rTMS might have potential effect in enhancing motor function for patients with PS. REGISTRATION: The study was registered in the Chinese Clinical Trial Registry (registration No. ChiCTR2200058015 at http://www.chictr.org.cn/searchprojen.aspx) on March 26, 2022.

2.
RSC Adv ; 14(34): 24749-24755, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39131502

RESUMO

Recently, ternary metal oxides as cathode materials have been the focus of research into supercapacitors owing to their high power density and cost-efficient features. The development of excellent electrode materials is the key to improving supercapacitor total performance. Herein, we report several kinds of NiMoO4 nanostructures grown on nickel foam using a simple hydrothermal strategy. The assembled hybrid devices show an energy density of 35.9 W h kg-1 at a power density of 2708 W kg-1. After repeated charging and discharging cycling and bending tests, they show excellent durability performance and mechanical stability performance.

3.
EMBO J ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174852

RESUMO

Tumor cell heterogeneity defines therapy responsiveness in neuroblastoma (NB), a cancer derived from neural crest cells. NB consists of two primary subtypes: adrenergic and mesenchymal. Adrenergic traits predominate in NB tumors, while mesenchymal features becomes enriched post-chemotherapy or after relapse. The interconversion between these subtypes contributes to NB lineage plasticity, but the underlying mechanisms driving this phenotypic switching remain unclear. Here, we demonstrate that SWI/SNF chromatin remodeling complex ATPases are essential in establishing an mesenchymal gene-permissive chromatin state in adrenergic-type NB, facilitating lineage plasticity. Targeting SWI/SNF ATPases with SMARCA2/4 dual degraders effectively inhibits NB cell proliferation, invasion, and notably, cellular plasticity, thereby preventing chemotherapy resistance. Mechanistically, depletion of SWI/SNF ATPases compacts cis-regulatory elements, diminishes enhancer activity, and displaces core transcription factors (MYCN, HAND2, PHOX2B, and GATA3) from DNA, thereby suppressing transcriptional programs associated with plasticity. These findings underscore the pivotal role of SWI/SNF ATPases in driving intrinsic plasticity and therapy resistance in neuroblastoma, highlighting an epigenetic target for combinational treatments in this cancer.

4.
Bioorg Med Chem ; 112: 117878, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39167979

RESUMO

Chemical RNA modification has emerged as a flexible approach for post-synthetic modifications in chemical biology research. Guide RNA (gRNA) plays a crucial role in the clustered regularly interspaced short palindromic repeats and associated protein system (CRISPR-Cas). Several toolkits have been developed to regulate gene expression and editing through modifications of gRNA. However, conditional regulation strategies to control gene editing in cells as required are still lacking. In this context, we introduce a strategy employing a cyclic disulfide-substituted acylating agent to randomly acylate the 2'-OH group on the gRNA strand. The CRISPR-Cas systems demonstrate off-on transformation activity driven by redox-triggered disulfide cleavage and undergo intramolecular cyclization, which releases the functionalized gRNA. Dithiothreitol (DTT) exhibits superior reductive capabilities in cleaving disulfides compared to glutathione (GSH), requiring fewer reductants. This acylation method with cyclic disulfides enables conditional control of CRISPR-Cas9, CRISPR-Cas13a, RNA hybridization, and aptamer folding. Our strategy facilitates precise in vivo control of gene editing, making it particularly valuable for targeted applications.

5.
Front Bioeng Biotechnol ; 12: 1404937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135949

RESUMO

Background: The percutaneous screw reconstruction technique, known as the "Tripod Technique," has demonstrated favorable clinical outcomes in the management of metastatic periacetabular lesions, as evidenced by our prior investigations and corroborated by independent studies. Nevertheless, there is a steep learning curve in handling this technique, with possible complications such as intraarticular screw placement. Methods: Preoperative pelvic CT scans were acquired before surgery and utilized for the guiding frame design. A convolutional neural network model was trained with annotated data to identify the starting point and trajectory of each potential screw. A model boundary intersection detection technology was used to determine the optimal diameter and length of each screw. A non-rigid registration technology was matched with a prefabricated model of the body surface to design personalized anchoring skin pads. Finally, a polylactic acid-based guiding frame for intraoperative was custom-made with a 3D printer. Results: 12 patients underwent a guiding frame-assisted Tripod procedure for treatment of periacetabular metastatic lesions. An intraoperative CT scan was performed in all cases to confirm screw trajectories. Among 36 screws that were implanted, 26 screws were implanted as designed. The remaining ten screws drifted, but all remained within the intra-osseous conduit without any complications. The mean surgical time was 1.22 h with the guiding frame compared with 2.3 h without the guiding frame. Following the surgical procedure, a noteworthy enhancement in pain management, as evidenced by a reduction in scores on the visual analog scale (p < 0.01), and an improvement in functional status, as assessed through the Eastern Cooperative Oncology Group score (p < 0.01), were observed when compared to the patient's pre-operative condition. Conclusion: This proof-of-concept investigation demonstrates that the amalgamation of AI-assisted surgical planning and additive manufacturing can improve surgical accuracy and shorten surgical duration. While access to this technology is currently constrained during its early stages of development, it is anticipated that these limitations will diminish as the potential of AI and additive manufacturing in facilitating complex orthopedic procedures becomes more evident, leading to a surge in interest and adoption of this approach.

6.
Biomed Pharmacother ; 179: 117298, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151313

RESUMO

Immune checkpoint blocking (ICB), a tumor treatment based on the mechanism of T-cell activation, has shown high efficacy in clinical trials, but not all patients benefit from it. Immune checkpoint inhibitors (ICIs) do not respond to cold tumors that lack effective T-cell infiltration but respond well to hot tumors with sufficient T-cell infiltration. How to convert an unresponsive cold tumor into a responsive hot tumor is an important topic in cancer immunotherapy. Ferroptosis, a newly discovered immunogenic cell death (ICD) form, has great potential in cancer therapy. In the process of deeply understanding the mechanism of cold tumor formation, it was found that ferroptosis showed a powerful immune-activating effect by improving T-cell infiltration, and the combination of ICB therapy significantly enhanced the anti-tumor efficacy. This paper reviews the complex relationship between T cells and ferroptosis, as well as summarizes the various mechanisms by which ferroptosis enhances T cell infiltration: reactivation of T cells and reversal of immunosuppressive tumor microenvironment (TME), as well as recent advances of ICI in combination with targeted ferroptosis therapies, which provides guidance for better improving the ICB efficacy of cold tumors.

7.
Proc Natl Acad Sci U S A ; 121(33): e2318601121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116123

RESUMO

Serial capture affinity purification (SCAP) is a powerful method to isolate a specific protein complex. When combined with cross-linking mass spectrometry and computational approaches, one can build an integrated structural model of the isolated complex. Here, we applied SCAP to dissect a subpopulation of WDR76 in complex with SPIN1, a histone reader that recognizes trimethylated histone H3 lysine4 (H3K4me3). In contrast to a previous SCAP analysis of the SPIN1:SPINDOC complex, histones and the H3K4me3 mark were enriched with the WDR76:SPIN1 complex. Next, interaction network analysis of copurifying proteins and microscopy analysis revealed a potential role of the WDR76:SPIN1 complex in the DNA damage response. Since we detected 149 pairs of cross-links between WDR76, SPIN1, and histones, we then built an integrated structural model of the complex where SPIN1 recognized the H3K4me3 epigenetic mark while interacting with WDR76. Finally, we used the powerful Bayesian Integrative Modeling approach as implemented in the Integrative Modeling Platform to build a model of WDR76 and SPIN1 bound to the nucleosome.


Assuntos
Dano ao DNA , Histonas , Nucleossomos , Histonas/metabolismo , Histonas/química , Nucleossomos/metabolismo , Humanos , Ligação Proteica , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/química , Modelos Moleculares , ATPases Associadas a Diversas Atividades Celulares , DNA Helicases
8.
Orthop Surg ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198975

RESUMO

OBJECTIVES: Due to the technical challenges associated with femoral reconstruction in total hip arthroplasty for patients with developmental dysplasia of the hip (DDH), the exact indications for using femoral modular stems, despite their satisfactory clinical outcomes, remain poorly investigated. This study sought to assess the morphology of the femur and acetabulum, and to investigate the discriminative ability of femoral anteversion (FA), acetabular anteversion (AA), and combined anteversion (CA) on the selection of femoral modular stem in dysplastic hips. METHODS: Retrospective data were collected from multiple centers on a total of 230 cases who underwent THA due to DDH from January 1, 2020, to March 1, 2023. There were 46 males and 184 females, with an average age of 51.57 ± 14.87. Patients were stratified according to Crowe and Eftekhar classifications. FA, AA, and CA were measured using computed tomography (CT). The distribution of these indices in different grades of dysplastic hips was compared, and the correlation between these indices and the selection of femoral modular stem was analyzed. Receiver operating characteristic (ROC) and likelihood statistics were performed to investigate the discriminating and predictive value of each index in selecting modular stem. RESULTS: Two hundred and thirty hips were included in the study. FA increased as the subluxation percentage increased: type I, 21.5°; type II, 28.6°; type III, 34.9°; and type IV, 39.7°. AA was smaller in type I (16.9°) and higher in types II, III, and IV (18.9-22.6°). The area under the curve for the modular stem was 0.87 for FA, 0.86 for CA, and 0.65 for AA. The optimal cutoff values were FA > 32.6°, CA > 50.7°, and AA > 23.3°. CONCLUSION: Excessive AA and femoral anteversion FA were observed in Crowe types II, III, and IV cases. FA and CA demonstrated strong discriminative ability and predictive value in the selection of a modular stem. The best cutoff values were ≥32.6° for FA and ≥50.7° for CA in discriminating the use of modular stem. Surgeons may contemplate the use of a modular stem when the preoperative evaluation approaches the cutoff value.

9.
Neuropharmacology ; 259: 110115, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39137872

RESUMO

Immune cells and interleukins play a crucial role in female-specific pain signaling. Interleukin 16 (IL-16) is a cytokine primarily associated with CD4+ T cell function. While previous studies have demonstrated the important role of spinal CD4+ T cells in neuropathic pain, the specific contribution of IL-16 to neuropathic pain remains unclear. In this study, by using a spinal nerve ligation (SNL)-induced neuropathic pain mice model, we found that SNL induced an increase in IL-16 mRNA levels, which persisted for a longer duration in female mice compared to male mice. Immunofluorescence analysis further confirmed enhanced IL-16- and CD4-positive signals in the spinal dorsal horn following SNL surgery in female mice. Knockdown of spinal IL-16 by siRNA or inhibition of CD4 by FGF22-IN-1, a CD4 inhibitor, attenuated established mechanical and thermal pain hypersensitivity induced by SNL. Furthermore, female mice injected with IL-16 intrathecally exhibited significant spontaneous pain, mechanical and thermal hyperalgesia, all of which could be alleviated by FGF22-IN-1 or a CD3 antibody. Additionally, IL-16 induced astrocyte activation but not microglial activation in the spinal dorsal horn of female mice. Meanwhile, astrocyte activation could be suppressed by the CD3 antibody. These results provide compelling evidence that IL-16 promotes astrocyte activation via CD4 on CD3+ T cells, which is critical for maintaining neuropathic pain in female mice.


Assuntos
Astrócitos , Complexo CD3 , Interleucina-16 , Neuralgia , Transdução de Sinais , Animais , Feminino , Camundongos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Complexo CD3/metabolismo , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Hiperalgesia/metabolismo , Interleucina-16/metabolismo , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
10.
Mol Carcinog ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136603

RESUMO

The regulatory mechanisms underlying bone metastasis in lung adenocarcinoma (LUAD) are not yet fully understood despite the frequent occurrence of bone involvement. This study aimed to examine the involvement and mechanism of integrin subunit beta 3 (ITGB3) in the process of LUAD bone metastasis. Our findings indicate that ITGB3 facilitates the migration and invasion of LUAD cells in vitro and metastasis to the bone in vivo. Furthermore, ITGB3 stimulates osteoclast production and activation, thereby expediting osteolytic lesion progression. Extracellular vesicles (EVs) isolated from the conditioned medium (CM) of LUAD cells overexpressing ITGB3 determined that ITGB3 facilitates osteoclastogenesis and enhances osteoclast activity by utilizing EVs-mediated transport to RAW264.7 cells. Our in vivo findings demonstrated that ITGB3-EVs augmented the population of osteoclasts, thereby establishing an osteoclastic pre-metastatic niche (PMN) conducive to the colonization and subsequent growth of LUAD cells in the bone. ITGB3 is enriched in serum EVs of patients diagnosed with LUAD bone metastasis, potentially facilitating osteoclast differentiation and activation in vitro. Our research illustrates that ITGB3-EVs derived from LUAD cells facilitate osteoclast differentiation and activation by modulating the phosphorylation level of p38 MAPK. This process ultimately leads to the generation of osteolytic PMN and accelerates the progression of bone metastasis.

11.
bioRxiv ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39149376

RESUMO

Arginylation installed by arginyltransferase 1 (ATE1) features an addition of arginine (Arg) to the reactive amino acids (e.g., Glu and Asp) at the protein N-terminus or side chain. Systemic removal of arginylation after ATE1 knockout (KO) in mouse models resulted in heart defects leading to embryonic lethality. The biological importance of arginylation has motivated the discovery of arginylation sites on proteins using bottom-up approaches. While bottom-up proteomics is powerful in localizing peptide arginylation, it lacks the ability to quantify proteoforms at the protein level. Here we developed a top-down proteomics workflow for characterizing and quantifying calreticulin (CALR) arginylation. To generate fully arginylated CALR (R-CALR), we have inserted an R residue after the signaling peptide (AA1-17). Upon overexpression in ATE1 KO cells, CALR and R-CALR were purified by affinity purification and analyzed by LCMS in positive mode. Both proteoforms showed charge states ranging from 27-68 with charge 58 as the most intense charge state. Their MS2 spectra from electron-activated dissociation (EAD) showed preferential fragmentation at the protein N-terminals which yielded sufficient c ions facilitating precise localization of the arginylation sites. The calcium-binding domain (CBD) gave minimum characteristic ions possibly due to the abundant presence of >100 D and E residues. Ultraviolet photodissociation (UVPD) compared with EAD and ETD significantly improved the sequence coverage of CBD. This method can identify and quantify CALR arginylation at absence, endogenous (low), and high levels. To our knowledge, our work is the first application of top-down proteomics in characterizing post-translational arginylation in vitro and in vivo.

12.
J Cancer Res Clin Oncol ; 150(8): 378, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39085623

RESUMO

PURPOSE: Many T1-2N0-1M0 triple-negative breast cancer (TNBC) patients who undergo neoadjuvant chemotherapy (NAC) do not receive breast-conserving therapy (BCT) due to concerns about non-pCR or lymph node metastasis presence. METHODS: T1-2N0-1M0 TNBC patients who underwent NAC between 2010 and 2017 were collected from the SEER database. Factors affecting surgical modalities were analyzed by multinomial logistic regression. The overall survival (OS) and breast cancer-specific survival (BCSS) were evaluated by Kaplan-Meier curves and Cox proportional hazards models. Further stratified subgroup analyses were performed based on the response to NAC and N-stage. Adjusted-hazard ratios were also calculated to exclude potential bias. RESULTS: A total of 1112 patients were enrolled (median follow-up: 81 months), 58.5% received BCT, 23.6% received reconstruction and 17.9% received mastectomy. Response to NAC and N-stage not only influenced the choice of surgical modality but also were independent predictors for OS and BCSS. The surgery-induced survival differences mainly affect OS. Survival analyses demonstrated that the 10-year OS of BCT was superior or equal to that of mastectomy even in patients with partial response (PR) (77.4% vs. 64.1%, P = 0.013), no response (NR) (44.9% vs. 64.2%, P = 0.33), or N1 stage (75.7% vs. 57.4%, P = 0.0021). In the N1-PR cohort, mastectomy may lead to worse OS (P = 0.0012). Besides, between reconstruction and BCT, there was no statistical difference in OS or BCSS (P > 0.05). CONCLUSION: Our study reveals the necessity of breast surgical de-escalation. Besides, physicians should actively recommend reconstruction for individuals who strongly desire mastectomy.


Assuntos
Terapia Neoadjuvante , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/cirurgia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/mortalidade , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Mastectomia/métodos , Estadiamento de Neoplasias , Programa de SEER , Estudos Retrospectivos , Quimioterapia Adjuvante
13.
Autoimmun Rev ; 23(6): 103578, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004157

RESUMO

Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.

14.
J Org Chem ; 89(14): 10012-10020, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38952027

RESUMO

A visible-light-induced radical-radical cross-coupling reaction between 1,3,4-oxadiazoles and hydroxamic acid derivatives has been realized under base- and metal-free conditions. The protocol was characterized by broad substrate scope, excellent functional group tolerance, and simple operation procedures. By using this protocol, a variety of biologically important 5-aryl-1,3,4-oxadiazole-2-methylamines were obtained in good yields with excellent chemoselectivity.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39058617

RESUMO

We introduce Ego4D, a massive-scale egocentric video dataset and benchmark suite. It offers 3,670 hours of daily-life activity video spanning hundreds of scenarios (household, outdoor, workplace, leisure, etc.) captured by 931 unique camera wearers from 74 worldwide locations and 9 different countries. The approach to collection is designed to uphold rigorous privacy and ethics standards, with consenting participants and robust de-identification procedures where relevant. Ego4D dramatically expands the volume of diverse egocentric video footage publicly available to the research community. Portions of the video are accompanied by audio, 3D meshes of the environment, eye gaze, stereo, and/or synchronized videos from multiple egocentric cameras at the same event. Furthermore, we present a host of new benchmark challenges centered around understanding the first-person visual experience in the past (querying an episodic memory), present (analyzing hand-object manipulation, audio-visual conversation, and social interactions), and future (forecasting activities). By publicly sharing this massive annotated dataset and benchmark suite, we aim to push the frontier of first-person perception. Project page: https://ego4d-data.org/.

16.
Environ Res ; 260: 119679, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059622

RESUMO

Glyphosate, a commonly used organophosphorus herbicide in rice-crayfish cropping regions, may alter regional phosphorus cycle processes while affecting the structure of microbial communities. However, the effects of glyphosate residues on rice-crayfish systems remain unclear. In this study, we assessed the spatial and temporal distribution characteristics of glyphosate and its primary degradation products, as well as the impact mechanisms of glyphosate on microbial communities and the phosphorus cycle in rice-crayfish systems such as paddy fields, breeding ditches and recharge rivers. The detection rates of glyphosate and aminomethylphosphonic acid (AMPA) were 100% in rice-crayfish systems. Concentrations of glyphosate in the water phase and soil/sediment were as high as 0.012 µg/L and 7.480 µg/kg, respectively, and concentrations of AMPA were as high as 17.435 µg/L and 13.200 µg/kg, respectively. Glyphosate concentrations were not affected by rainfall or sampling site, but concentrations of AMPA in the water phase of recharge rivers were affected by rainfall. The glyphosate concentration was significantly and positively correlated with RBG-16-58-14 abundance, and the AMPA concentration was significantly and positively correlated with Actinobacteria and Lysobacter abundance, and negatively correlated with Cyanobacteria abundance (P < 0.05). The highest abundances of phoD, phnK, and ppx genes were found in all soils/sediments. Glyphosate concentration in soil/sediment was significantly and positively correlated with the abundance of phoD gene encoding an organophosphorus-degrading enzyme and ppx gene encoding poly inorganic phosphate (Pi) hydrolase (P < 0.05). In addition, the glyphosate concentration was significantly and positively correlated with the Ca-bonded Pi content (P < 0.05). This implies that glyphosate may promote the production of stable Pi in rice-crayfish systems by increasing the abundance of phoD and ppx genes. The results of this study reveal the impact mechanism of glyphosate on the phosphorus cycle in rice-crayfish systems and provide a basis for the risk assessment of glyphosate.

17.
Food Funct ; 15(15): 7936-7950, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38980112

RESUMO

Previous studies mostly focused on the benefits of caloric restriction and fasting on longevity. However, whether the timing and frequency of eating affect aging remains unclear. Here, we investigated the associations between chrononutrition patterns and biological aging, and explored whether and to what extent dietary inflammation mediated this association. 16 531 adults aged 20 to 84 years from the National Health and Nutrition Examination Survey were collected. Chrononutrition patterns were determined with two 24-hour dietary recalls. Phenotypic age was calculated to reflect the biological aging status. The dietary inflammatory index (DII) was used to assess the dietary inflammation. After adjustment of the survey weight and multiple covariates including total energy intake, participants in the third tertile of the time of the first meal (mean 10 : 26) exhibited more advanced biological age (ß 0.64; 95% CI, 0.26-1.00) and a higher incidence of accelerated aging (odds ratio (OR) 1.25; 95% CI, 1.06-1.47) compared to those of the first tertile (mean 6 : 14). Higher eating frequency was associated with delayed biological aging in both multivariable linear (ß -0.31; 95% CI, -0.44 to -0.19) and logistic regression model (OR 0.90; 95% CI, 0.85-0.95). Furthermore, we found that DII rather than metabolic factors mediated the inverse association between eating frequency and biological aging (mediation proportion 24.67%; 95% CI, 19.83%-32.00%). Our findings demonstrated the association between chrononutrition patterns and biological aging among the US general population and the potential role of dietary inflammation in this association, suggesting that modifying chrononutrition patterns may be a practical and cost-effective strategy for combating aging.


Assuntos
Envelhecimento , Inquéritos Nutricionais , Humanos , Pessoa de Meia-Idade , Adulto , Idoso , Feminino , Masculino , Estudos Transversais , Idoso de 80 Anos ou mais , Adulto Jovem , Dieta , Inflamação , Comportamento Alimentar
18.
Int J Med Robot ; 20(4): e2664, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994900

RESUMO

BACKGROUND: This study aimed to develop a novel deep convolutional neural network called Dual-path Double Attention Transformer (DDA-Transformer) designed to achieve precise and fast knee joint CT image segmentation and to validate it in robotic-assisted total knee arthroplasty (TKA). METHODS: The femoral, tibial, patellar, and fibular segmentation performance and speed were evaluated and the accuracy of component sizing, bone resection and alignment of the robotic-assisted TKA system constructed using this deep learning network was clinically validated. RESULTS: Overall, DDA-Transformer outperformed six other networks in terms of the Dice coefficient, intersection over union, average surface distance, and Hausdorff distance. DDA-Transformer exhibited significantly faster segmentation speeds than nnUnet, TransUnet and 3D-Unet (p < 0.01). Furthermore, the robotic-assisted TKA system outperforms the manual group in surgical accuracy. CONCLUSIONS: DDA-Transformer exhibited significantly improved accuracy and robustness in knee joint segmentation, and this convenient and stable knee joint CT image segmentation network significantly improved the accuracy of the TKA procedure.


Assuntos
Artroplastia do Joelho , Aprendizado Profundo , Articulação do Joelho , Procedimentos Cirúrgicos Robóticos , Tomografia Computadorizada por Raios X , Humanos , Artroplastia do Joelho/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Tomografia Computadorizada por Raios X/métodos , Articulação do Joelho/cirurgia , Articulação do Joelho/diagnóstico por imagem , Masculino , Redes Neurais de Computação , Feminino , Processamento de Imagem Assistida por Computador/métodos , Cirurgia Assistida por Computador/métodos , Idoso , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Tíbia/cirurgia , Tíbia/diagnóstico por imagem , Algoritmos , Fêmur/cirurgia , Fêmur/diagnóstico por imagem , Imageamento Tridimensional/métodos
19.
Front Bioeng Biotechnol ; 12: 1404058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011157

RESUMO

Background: Currently, manual measurement of lumbosacral radiological parameters is time-consuming and laborious, and inevitably produces considerable variability. This study aimed to develop and evaluate a deep learning-based model for automatically measuring lumbosacral radiographic parameters on lateral lumbar radiographs. Methods: We retrospectively collected 1,240 lateral lumbar radiographs to train the model. The included images were randomly divided into training, validation, and test sets in a ratio of approximately 8:1:1 for model training, fine-tuning, and performance evaluation, respectively. The parameters measured in this study were lumbar lordosis (LL), sacral horizontal angle (SHA), intervertebral space angle (ISA) at L4-L5 and L5-S1 segments, and the percentage of lumbar spondylolisthesis (PLS) at L4-L5 and L5-S1 segments. The model identified key points using image segmentation results and calculated measurements. The average results of key points annotated by the three spine surgeons were used as the reference standard. The model's performance was evaluated using the percentage of correct key points (PCK), intra-class correlation coefficient (ICC), Pearson correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), and box plots. Results: The model's mean differences from the reference standard for LL, SHA, ISA (L4-L5), ISA (L5-S1), PLS (L4-L5), and PLS (L5-S1) were 1.69°, 1.36°, 1.55°, 1.90°, 1.60%, and 2.43%, respectively. When compared with the reference standard, the measurements of the model had better correlation and consistency (LL, SHA, and ISA: ICC = 0.91-0.97, r = 0.91-0.96, MAE = 1.89-2.47, RMSE = 2.32-3.12; PLS: ICC = 0.90-0.92, r = 0.90-0.91, MAE = 1.95-2.93, RMSE = 2.52-3.70), and the differences between them were not statistically significant (p > 0.05). Conclusion: The model developed in this study could correctly identify key vertebral points on lateral lumbar radiographs and automatically calculate lumbosacral radiographic parameters. The measurement results of the model had good consistency and reliability compared to manual measurements. With additional training and optimization, this technology holds promise for future measurements in clinical practice and analysis of large datasets.

20.
Insect Mol Biol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970387

RESUMO

Insect reproductive capacity can affect effective pest control and infertility studies and has become an important focus in recent molecular genetic research. Nucleosome assembly protein (Nap) is highly conserved across multiple species and is involved in forming the sperm nucleus in many species. We used clustered regularly interspaced palindromic repeats/Cas9 technology to knockout BmNap in Bombyx mori and observed that the mutations caused female infertility, whereas male fertility was not affected. BmNap mutants grew and mated normally; however, female mutants laid smaller eggs that could not be fertilised and did not hatch. In addition, female sterility produced by the mutation could be inherited stably via male mutants; therefore, Nap could be used as a potential target for lepidopteran pest control through population regulation. In the current study, we elucidated a new function of BmNap, increased the understanding of the oogenesis regulation network in Lepidoptera and promoted the development of insect sterility technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA