Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893499

RESUMO

Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the cytotoxicity of the genotoxic anticancer drug cisplatin, yet the underlying mechanism remains poorly understood. Herein, we revealed that TSA at a low concentration (1 µM) promoted the cisplatin-induced activation of caspase-3/6, which, in turn, increased the level of cleaved PARP1 and degraded lamin A&C, leading to more cisplatin-induced apoptosis and G2/M phase arrest of A549 cancer cells. Both ICP-MS and ToF-SIMS measurements demonstrated a significant increase in DNA-bound platinum in A549 cells in the presence of TSA, which was attributable to TSA-induced increase in the accessibility of genomic DNA to cisplatin attacking. The global quantitative proteomics results further showed that in the presence of TSA, cisplatin activated INF signaling to upregulate STAT1 and SAMHD1 to increase cisplatin sensitivity and downregulated ICAM1 and CD44 to reduce cell migration, synergistically promoting cisplatin cytotoxicity. Furthermore, in the presence of TSA, cisplatin downregulated TFAM and SLC3A2 to enhance cisplatin-induced ferroptosis, also contributing to the promotion of cisplatin cytotoxicity. Importantly, our posttranslational modification data indicated that acetylation at H4K8 played a dominant role in promoting cisplatin cytotoxicity. These findings provide novel insights into better understanding the principle of combining chemotherapy of genotoxic drugs and HDAC inhibitors for the treatment of cancers.


Assuntos
Antineoplásicos , Apoptose , Cisplatino , Ácidos Hidroxâmicos , Cisplatino/farmacologia , Humanos , Apoptose/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Antineoplásicos/farmacologia , Células A549 , Inibidores de Histona Desacetilases/farmacologia , Linhagem Celular Tumoral , Acetilação/efeitos dos fármacos , Sinergismo Farmacológico
2.
Oncologist ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907676

RESUMO

BACKGROUND: The value of serum biomarkers, particularly alpha-fetoprotein (AFP) and protein induced by vitamin K absence or antagonist-II (PIVKA-II), gains increasing attention in prognostic evaluation and recurrence monitoring for patients with hepatocellular carcinoma (HCC). This study investigated the implications of serological incomplete conversion (SIC) of these 2 biomarkers as prognostic indicators for long-term outcomes after HCC resection. METHODS: A multicenter observational study was conducted on a cohort of HCC patients presenting with AFP (>20 ng/mL) or PIVKA-II (>40 mAU/mL) positivity who underwent curative-intent resection. Based on their postoperative AFP and PIVKA-II levels at first postoperative follow-up (4~8 weeks after surgery), these patients were stratified into the serological incomplete conversion (SIC) and serological complete conversion (SCC) groups. The study endpoints were recurrence and overall survival (OS). RESULTS: Among 1755 patients, 379 and 1376 were categorized as having SIC and SCC, respectively. The SIC group exhibited 1- and 5-year OS rates of 67.5% and 26.3%, with the corresponding recurrence rates of 53.2% and 79.0%, respectively; while the SCC group displayed 1- and 5-year OS rates of 95.8% and 62.5%, with the corresponding recurrence rates of 16.8% and 48.8%, respectively (both P < .001). Multivariate Cox regression analysis demonstrated that postoperative SIC was an independent risk factor for both increased recurrence (HR: 2.40, 95% CI, 2.04-2.81, P < .001) and decreased OS (HR: 2.69, 95% CI, 2.24-3.24, P < .001). CONCLUSION: The results emphasize that postoperative incomplete conversion of either AFP or PIVKA-II is a significant prognostic marker, indicating a higher risk for adverse oncologic outcomes following HCC resection. This revelation has crucial implications for refining postoperative adjuvant therapy and surveillance strategies for HCC patients.

3.
Genomics ; 116(5): 110889, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901654

RESUMO

Cholangiocarcinoma (CCA) is widely noted for its high degree of malignancy, rapid progression, and limited therapeutic options. This study was carried out on transcriptome data of 417 CCA samples from different anatomical locations. The effects of lipid metabolism related genes and immune related genes as CCA classifiers were compared. Key genes were derived from MVI subtypes and better molecular subtypes. Pathways such as epithelial mesenchymal transition (EMT) and cell cycle were significantly activated in MVI-positive group. CCA patients were classified into three (four) subtypes based on lipid metabolism (immune) related genes, with better prognosis observed in lipid metabolism-C1, immune-C2, and immune-C4. IPTW analysis found that the prognosis of lipid metabolism-C1 was significantly better than that of lipid metabolism-C2 + C3 before and after correction. KRT16 was finally selected as the key gene. And knockdown of KRT16 inhibited proliferation, migration and invasion of CCA cells.

4.
Mil Med Res ; 11(1): 41, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937853

RESUMO

BACKGROUND: Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet ß cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS: db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS: In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS: PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.


Assuntos
Trifosfato de Adenosina , Conexinas , Gluconeogênese , Lipogênese , Fígado , Proteínas do Tecido Nervoso , Animais , Conexinas/metabolismo , Camundongos , Gluconeogênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Trifosfato de Adenosina/metabolismo , Lipogênese/fisiologia , Fígado/metabolismo , Camundongos Knockout , Masculino , Humanos , Dieta Hiperlipídica/efeitos adversos , Citocinas
5.
Gut ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458750

RESUMO

OBJECTIVE: The correlation between cholangiocarcinoma (CCA) progression and bile is rarely studied. Here, we aimed to identify differential metabolites in benign and malignant bile ducts and elucidate the generation, function and degradation of bile metabolites. DESIGN: Differential metabolites in the bile from CCA and benign biliary stenosis were identified by metabonomics. Biliary molecules able to induce mast cell (MC) degranulation were revealed by in vitro and in vivo experiments, including liquid chromatography-mass spectrometry (MS)/MS and bioluminescence resonance energy transfer assays. Histamine (HA) receptor expression in CCA was mapped using a single-cell mRNA sequence. HA receptor functions were elucidated by patient-derived xenografts (PDX) in humanised mice and orthotopic models in MC-deficient mice. Genes involved in HA-induced proliferation were screened by CRISPR/Cas9. RESULTS: Bile HA was elevated in CCA and indicated poorer prognoses. Cancer-associated fibroblasts (CAFs)-derived stem cell factor (SCF) recruited MCs, and bile N,N-dimethyl-1,4-phenylenediamine (DMPD) stimulated MCs to release HA through G protein-coupled receptor subtype 2 (MRGPRX2)-Gαq signalling. Bile-induced MCs released platelet-derived growth factor subunit B (PDGF-B) and angiopoietin 1/2 (ANGPT1/2), which enhanced CCA angiogenesis and lymphangiogenesis. Histamine receptor H1 (HRH1) and HRH2 were predominantly expressed in CCA cells and CAFs, respectively. HA promoted CCA cell proliferation by activating HRH1-Gαq signalling and hastened CAFs to secrete hepatocyte growth factor by stimulating HRH2-Gαs signalling. Solute carrier family 22 member 3 (SLC22A3) inhibited HA-induced CCA proliferation by importing bile HA into cells for degradation, and SLC22A3 deletion resulted in HA accumulation. CONCLUSION: Bile HA is released from MCs through DMPD stimulation and degraded via SLC22A3 import. Different HA receptors exhibit a distinct expression profile in CCA and produce different oncogenic effects. MCs promote CCA progression in a CCA-bile interplay pattern.

6.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398629

RESUMO

Strophanthidin (SPTD), one of the cardiac glycosides, is refined from traditional Chinese medicines such as Semen Lepidii and Antiaris toxicaria, and was initially used for the treatment of heart failure disease in clinic. Recently, SPTD has been shown to be a potential anticancer agent, but the underlying mechanism of action is poorly understood. Herein, we explored the molecular mechanism by which SPTD exerts anticancer effects in A549 human lung adenocarcinoma cells by means of mass spectrometry-based quantitative proteomics in combination with bioinformatics analysis. We revealed that SPTD promoted the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2, or DR5) in A549 cells to activate caspase 3/6/8, in particular caspase 3. Consequently, the activated caspases elevated the expression level of apoptotic chromatin condensation inducer in the nucleus (ACIN1) and prelamin-A/C (LMNA), ultimately inducing apoptosis via cooperation with the SPTD-induced overexpressed barrier-to-autointegration factor 1 (Banf1). Moreover, the SPTD-induced DEPs interacted with each other to downregulate the p38 MAPK/ERK signaling, contributing to the SPTD inhibition of the growth of A549 cells. Additionally, the downregulation of collagen COL1A5 by SPTD was another anticancer benefit of SPTD through the modulation of the cell microenvironment.


Assuntos
Adenocarcinoma de Pulmão , Estrofantidina , Humanos , Estrofantidina/farmacologia , Caspase 3/farmacologia , Linhagem Celular Tumoral , Apoptose , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Microambiente Tumoral , Proteínas Nucleares
7.
CNS Neurosci Ther ; 30(2): e14628, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421138

RESUMO

AIMS: Neurogenic bladder (NB) is a prevalent and debilitating consequence of spinal cord injury (SCI). Indeed, the accurate prognostication of early bladder outcomes is crucial for patient counseling, rehabilitation goal setting, and personalized intervention planning. METHODS: A retrospective exploratory analysis was conducted on a cohort of consecutive SCI patients admitted to a rehabilitation facility in China from May 2016 to December 2022. Demographic, clinical, and electrophysiological data were collected within 40 days post-SCI, with bladder outcomes assessed at 3 months following SCI onset. RESULTS: The present study enrolled 202 SCI patients with a mean age of 40.3 ± 12.3 years. At 3 months post-SCI, 79 participants exhibited complete bladder emptying. Least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analyses identified the H-reflex of the soleus muscle, the American Spinal Injury Association Lower Extremity Motor Score (ASIA-LEMS), and the time from lesion to rehabilitation facility (TLRF) as significant independent predictors for bladder emptying. A scoring system named HALT was developed, yielding a strong discriminatory performance with an area under the receiver operating characteristics curve (aROC) of 0.878 (95% CI: 0.823-0.933). A simplified model utilizing only the H-reflex exhibited excellent discriminatory ability with an aROC of 0.824 (95% CI: 0.766-0.881). Both models demonstrated good calibration via the Hosmer-Lemeshow test and favorable clinical net benefits through decision curve analysis (DCA). In comparison to ASIA-LEMS, both the HALT score and H-reflex showed superior predictive accuracy for bladder outcome. Notably, in individuals with incomplete injuries, the HALT score (aROC = 0.973, 95% CI: 0.940-1.000) and the H-reflex (aROC = 0.888, 95% CI: 0.807-0.970) displayed enhanced performance. CONCLUSION: Two reliable models, the HALT score and the H-reflex, were developed to predict bladder outcomes as early as 3 months after SCI onset. Importantly, this study provides hitherto undocumented evidence regarding the predictive significance of the soleus H-reflex in relation to bladder outcomes in SCI patients.


Assuntos
Traumatismos da Medula Espinal , Bexiga Urinária , Humanos , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/terapia , Músculo Esquelético , Curva ROC
9.
Gut ; 72(11): 2149-2163, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549980

RESUMO

OBJECTIVE: Selecting interventions for patients with solitary hepatocellular carcinoma (HCC) remains a challenge. Despite gross classification being proposed as a potential prognostic predictor, its widespread use has been restricted due to inadequate studies with sufficient patient numbers and the lack of established mechanisms. We sought to investigate the prognostic impacts on patients with HCC of different gross subtypes and assess their corresponding molecular landscapes. DESIGN: A prospective cohort of 400 patients who underwent hepatic resection for solitary HCC was reviewed and analysed and gross classification was assessed. Multiomics analyses were performed on tumours and non-tumour tissues from 49 patients to investigate the mechanisms underlying gross classification. Inverse probability of treatment weight (IPTW) was used to control for confounding factors. RESULTS: Overall 3-year survival rates varied significantly among the four gross subtypes (type I: 91%, type II: 80%, type III: 74.6%, type IV: 38.8%). Type IV was found to be independently associated with poor prognosis in both the entire cohort and the IPTW cohort. The four gross subtypes exhibited three distinct transcriptional modules. Particularly, type IV tumours exhibited increased angiogenesis and immune score as well as decreased metabolic pathways, together with highest frequency of TP53 mutations. Patients with type IV HCC may benefit from adjuvant intra-arterial therapy other than the other three subtypes. Accordingly, a modified trichotomous margin morphological gross classification was established. CONCLUSION: Different gross types of HCC showed significantly different prognosis and molecular characteristics. Gross classification may aid in development of precise individualised diagnosis and treatment strategies for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Estudos Prospectivos , Multiômica , Prognóstico
10.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175463

RESUMO

The ruthenium polypyridine complex [Ru(dppa)2(pytp)] (PF6)2 (termed as ZQX-1), where dppa = 4,7-diphenyl-1,10-phenanthroline and pytp = 4'-pyrene-2,2':6',2''-terpyridine, has been shown a high and selective cytotoxicity to hypoxic and cisplatin-resistant cancer cells either under irradiation with blue light or upon two-photon excitation. The IC50 values of ZQX-1 towards A549 cancer cells and HEK293 health cells are 0.16 ± 0.09 µM and >100 µM under irradiation at 420 nm, respectively. However, the mechanism of action of ZQX-1 remains unclear. In this work, using the quantitative proteomics method we identified 84 differentially expressed proteins (DEPs) with |fold-change| ≥ 1.2 in A549 cancer cells exposed to ZQX-1 under irradiation at 420 nm. Bioinformatics analysis of the DEPs revealed that photoactivated ZQX-1 generated reactive oxygen species (ROS) to activate oxidative phosphorylation signaling to overproduce ATP; it also released ROS and pyrene derivative to damage DNA and arrest A549 cells at S-phase, which synergistically led to oncotic necrosis and apoptosis of A549 cells to deplete excess ATP, evidenced by the elevated level of PRAP1 and cleaved capase-3. Moreover, the DNA damage inhibited the expression of DNA repair-related proteins, such as RBX1 and GPS1, enhancing photocytotoxicity of ZQX-1, which was reflected in the inhibition of integrin signaling and disruption of ribosome assembly. Importantly, the photoactivated ZQX-1 was shown to activate hypoxia-inducible factor 1A (HIF1A) survival signaling, implying that combining use of ZQX-1 with HIF1A signaling inhibitors may further promote the photocytotoxicity of the prodrug.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Humanos , Células A549 , Antineoplásicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fosforilação Oxidativa , Células HEK293 , Proteômica , Necrose , Apoptose , DNA/metabolismo , Trifosfato de Adenosina/metabolismo , Rutênio/farmacologia , Complexos de Coordenação/farmacologia
11.
Medicine (Baltimore) ; 101(38): e30678, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36197270

RESUMO

Hepatocellular carcinoma (HCC) is still a significant global health problem. The development of bioinformatics may provide the opportunities to identify novel therapeutic targets. This study bioinformatically identified the differentially expressed genes (DEGs) in HCC and associated them with HCC prognosis using data from published databases. The DEGs downloaded from the Gene Expression Omnibus (GEO) website were visualized using the Venn diagram software, and then subjected to the GO and KEGG analyses, while the protein-protein interaction network was analyzed using Cytoscape software with the Search Tool for the search tool for the retrieval of interacting genes and the molecular complex detection plug-in. Kaplan-Meier curves and the log rank test were used to associate the core PPI network genes with the prognosis. There were 57 upregulated and 143 downregulated genes in HCC samples. The GO and pathway analyses revealed that these DEGs are involved in the biological processes (BPs), molecular functions (MFs), and cell components (CCs). The PPI network covered 50 upregulated and 108 downregulated genes, and the core modules of this PPI network contained 34 upregulated genes. A total of 28 of these upregulated genes were associated with a poor HCC prognosis, 27 of which were highly expressed in HCC tissues. This study identified 28 DEGs to be associated with a poor HCC prognosis. Future studies will investigate their possible applications as prognostic biomarkers and potential therapeutic targets for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores , Carcinoma Hepatocelular/diagnóstico , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Prognóstico
12.
Front Pharmacol ; 13: 939483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034815

RESUMO

Descurainia sophia seeds (DS), Astragalus mongholicus (AM), and their formulas are widely used to treat heart failure caused by various cardiac diseases in traditional Chinese medicine practice. However, the molecular mechanism of action of DS and AM has not been completely understood. Herein, we first used mass spectrometry coupled to UPLC to characterize the chemical components of DS and AM decoctions, then applied MS-based quantitative proteomic analysis to profile protein expression in the heart of rats with isoproterenol-induced cardiomyopathy (ISO-iCM) before and after treated with DS alone or combined with AM, astragaloside IV (AS4), calycosin-7-glucoside (C7G), and Astragalus polysaccharides (APS) from AM. We demonstrated for the first time that DS decoction alone could reverse the most of differentially expressed proteins in the heart of the rats with ISO-iCM, including the commonly recognized biomarkers natriuretic peptides (NPPA) of cardiomyopathy and sarcomeric myosin light chain 4 (MYL4), relieving ISO-iCM in rats, but AM did not pronouncedly improve the pharmacological efficiency of DS. Significantly, we revealed that AS4 remarkably promoted the pharmacological potency of DS by complementarily reversing myosin motor MYH6/7, and further downregulating NPPA and MYL4. In contrast, APS reduced the efficiency of DS due to upregulating NPPA and MYL4. These findings not only provide novel insights to better understanding in the combination principle of traditional Chinese medicine but also highlight the power of mass spectrometric proteomics strategy combined with conventional pathological approaches for the traditional medicine research.

13.
Cancer Cell Int ; 22(1): 224, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790992

RESUMO

Bioactive lipid molecules have been proposed to play important roles linking obesity/metabolic syndrome and cancers. Studies reveal that aberrant lipid metabolic signaling can reprogram cancer cells and non-cancer cells in the tumor microenvironment, contributing to cancer initiation, progression, metastasis, recurrence, and poor therapeutic response. Existing evidence indicates that controlling lipid metabolism can be a potential strategy for cancer prevention and therapy. By reviewing the current literature on the lipid metabolism in various cancers, we summarized major lipid molecules including fatty acids and cholesterol as well as lipid droplets and discussed their critical roles in cancer cells and non-cancer in terms of either promoting- or anti-tumorigenesis. This review provides an overview of the lipid molecules in cellular entities and their tumor microenvironment, adding to the existing knowledge with lipid metabolic reprogramming in immune cells and cancer associated cells. Comprehensive understanding of the regulatory role of lipid metabolism in cellular entities and their tumor microenvironment will provide a new direction for further studies, in a shift away from conventional cancer research. Exploring the lipid-related signaling targets that drive or block cancer development may lead to development of novel anti-cancer strategies distinct from traditional approaches for cancer prevention and treatment.

14.
Nucleic Acids Res ; 50(6): 3070-3082, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258624

RESUMO

Pyridostatin (PDS) is a well-known G-quadruplex (G4) inducer and stabilizer, yet its target genes have remained unclear. Herein, applying MS proteomics strategy, we revealed PDS significantly downregulated 22 proteins but upregulated 16 proteins in HeLa cancer cells, of which the genes both contain a number of G4 potential sequences, implying that PDS regulation on gene expression is far more complicated than inducing/stabilizing G4 structures. The PDS-downregulated proteins consequently upregulated 6 proteins to activate cyclin and cell cycle regulation, suggesting that PDS itself is not a potential anticancer agent, at least toward HeLa cancer cells. Importantly, SUB1, which encodes human positive cofactor and DNA lesion sensor PC4, was downregulated by 4.76-fold. Further studies demonstrated that the downregulation of PC4 dramatically promoted the cytotoxicity of trans-[PtCl2(NH3)(thiazole)] (trans-PtTz) toward HeLa cells to a similar level of cisplatin, contributable to retarding the repair of 1,3-trans-PtTz crosslinked DNA lesion mediated by PC4. These findings not only provide new insights into better understanding on the biological functions of PDS but also implicate a strategy for the rational design of novel multi-targeting platinum anticancer drugs via conjugation of PDS as a ligand to the coordination scaffold of transplatin for battling drug resistance to cisplatin.


Assuntos
Antineoplásicos , Quadruplex G , Aminoquinolinas , Antineoplásicos/química , Antineoplásicos/farmacologia , Cisplatino/química , Cisplatino/farmacologia , DNA/química , Células HeLa , Humanos , Ácidos Picolínicos
15.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209223

RESUMO

Baicalin is a major active ingredient of traditional Chinese medicine Scutellaria baicalensis, and has been shown to have antiviral, anti-inflammatory, and antitumor activities. However, the protein targets of baicalin have remained unclear. Herein, a chemical proteomics strategy was developed by combining baicalin-functionalized magnetic nanoparticles (BCL-N3@MNPs) and quantitative mass spectrometry to identify the target proteins of baicalin. Bioinformatics analysis with the use of Gene Ontology, STRING and Ingenuity Pathway Analysis, was performed to annotate the biological functions and the associated signaling pathways of the baicalin targeting proteins. Fourteen proteins in human embryonic kidney cells were identified to interact with baicalin with various binding affinities. Bioinformatics analysis revealed these proteins are mainly ATP-binding and/or ATPase activity proteins, such as CKB, HSP86, HSP70-1, HSP90, ATPSF1ß and ACTG1, and highly associated with the regulation of the role of PKR in interferon induction and the antiviral response signaling pathway (P = 10-6), PI3K/AKT signaling pathway (P = 10-5) and eNOS signaling pathway (P = 10-4). The results show that baicalin exerts multiply pharmacological functions, such as antiviral, anti-inflammatory, antitumor, and antioxidant functions, through regulating the PKR and PI3K/AKT/eNOS signaling pathways by targeting ATP-binding and ATPase activity proteins. These findings provide a fundamental insight into further studies on the mechanism of action of baicalin.


Assuntos
Flavonoides/farmacologia , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Flavonoides/administração & dosagem , Flavonoides/química , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Mapeamento de Interação de Proteínas
16.
Int J Biol Sci ; 17(10): 2576-2589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326695

RESUMO

Background: Nonalcoholic steatohepatitis (NASH) is the most severe form of non-alcoholic fatty liver disease (NAFLD) and a potential precursor of hepatocellular carcinoma (HCC). In our previous studies, we found that endocrine fibroblast growth factor 21 (FGF21) played a key role in preventing the development of NASH, however, the FGF15/19 mediated-FGFR4 signaling worsened NASH and even contributed to the NASH-HCC transition. The aim of this study is to determine whether FGF15/FGFR4 signaling could alleviate or aggravate NASH in the FGF21KO mice. Methods: NASH models were established in FGF21KO mice fed with high fat methionine-choline deficient (HFMCD) diet to investigate FGF15/FGFR4 signaling during early stage NASH and advanced stage NASH. Human hepatocytes, HepG2 and Hep3B cells, were cultured with human enterocytes Caco-2 cells to mimic gut-liver circulation to investigate the potential mechanism of NASH development. Results: Significant increase of FGF15 production was found in the liver of the NASH-FGF21KO mice, however the increased FGF15 protein was unable to alleviate hepatic lipid accumulation. In contrast, up-regulated FGF15/19/FGFR4 signaling was found in the FGF21KO mice with increased NASH severity, as evident by hepatocyte injury/repair, fibrosis and potential malignant events. In in vitro studies, blockage of FGFR4 by BLU9931 treatment attenuated the lipid accumulation, up-regulated cyclin D1, and epithelial-mesenchymal transition (EMT) in the hepatocytes. Conclusion: The increased FGF15 in NASH-FGF21KO mice could not substitute for FGF21 to compensate its lipid metabolic benefits thereby to prevent NASH development. Up-regulated FGFR4 signaling in NASH-FGF21KO mice coupled to proliferation and EMT events which were widely accepted to be associated with carcinogenic transformation.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Acrilamidas/farmacologia , Animais , Células CACO-2 , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Dieta Hiperlipídica , Fatores de Crescimento de Fibroblastos/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Quinazolinas/farmacologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética
17.
Chem Biol Interact ; 344: 109500, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33989594

RESUMO

As the sixth most prevalent cancer, liver cancer has been reported as the second cause of cancer-induced deaths globally. Lysionotin, a flavonoid compound widely distributed in Lysionotus pauciflorus Maxim, has attracted considerable attention due to its multiple biological activities. The present study analyzes the anti-liver cancer effects of lysionotin in cells and mouse models. In HepG2 and SMMC-7721 cells, lysionotin significantly reduced the viability of cells, inhibited cell proliferation and migration, enhanced cell apoptosis, promoted the increase of intracellular reactive oxygen species (ROS) levels, decreased mitochondrial membrane potential (MMP), and alternated the content of apoptosis-related proteins. In HepG2-and SMMC-7721-xenograft tumor mouse models, lysionotin inhibited tumor growth, reduced the expression levels of anti-apoptotic proteins and enhanced the expression levels of pro-apoptotic proteins in tumor tissues. Additionally, the pre-treatment of Ac-DEVD-CHO, an inhibitor of caspase-3, strongly restored the low cell viability, the enhanced apoptosis rate, the dissipation of MMP caused by lysionotin exposure, as well as prevented the lysionotin-caused enhancement on expressions of apoptosis related proteins, especially cleaved poly (ADP-ribose) polymerase (PARP), Fas Ligand (FasL), cleaved caspase-3 and Bax in both HepG2 and SMMC-7721 cells. Altogether, lysionotin showed significant anti-liver cancer effects related to caspase-3 mediated mitochondrial apoptosis.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Flavonas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biomaterials ; 270: 120680, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33588140

RESUMO

Pancreatic cancer (PC) is one kind of the most lethal malignancies worldwide, owing to its insidious symptoms, early metastases, and negative responses to current therapies. With an increasing understanding of pathology, the tumor microenvironment (TME) plays a significant role in ineffective treatment and poor prognosis of PC. Thus, a growing number of studies have focused on whether components of the TME could be effective targets for PC therapy. Biomaterials have been widely applied in cancer therapy, and numerous organic or inorganic biomaterials for TME regulation have been developed to inhibit the growth and metastasis of PC, as well as reverse therapeutic resistance. In this review, we discuss various biomaterials utilized to treat PC based on different components of the TME, including, but not limited to, extracellular matrix (ECM), abnormal tumor vascularization, and tumor-associated immune cells, as well as other unconventional therapeutic strategies. Besides, the perspectives on the underlying future of theranostic nanomedicines for PC therapy are also presented.


Assuntos
Neoplasias Pancreáticas , Microambiente Tumoral , Matriz Extracelular , Humanos , Terapia de Alvo Molecular , Pâncreas , Neoplasias Pancreáticas/tratamento farmacológico
19.
Front Pharmacol ; 12: 809125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082681

RESUMO

The stimuli-responsive polymer-based platform for controlled drug delivery has gained increasing attention in treating hepatocellular carcinoma (HCC) owing to the fascinating biocompatibility and biodegradability, improved antitumor efficacy, and negligible side effects recently. Herein, a disulfide bond-contained polypeptide nanogel, methoxy poly(ethylene glycol)-poly(l-phenylalanine-co-l-cystine) [mPEG-P(LP-co-LC)] nanogel, which could be responsive to the intracellular reduction microenvironments, was developed to deliver lenvatinib (LEN), an inhibitor of multiple receptor tyrosine kinases, for HCC therapy. The lenvatinib-loaded nanogel (NG/LEN) displayed concise drug delivery under the stimulus of glutathione in the cancer cells. Furthermore, the intracellular reduction-responsive nanomedicine NG/LEN showed excellent antitumor effect and almost no side effects toward both subcutaneous and orthotopic HCC tumor-allografted mice in comparison to free drug. The excellent tumor-inhibition efficacy with negligible side effects demonstrated the potential of NG/LEN for clinical molecular targeted therapy of gastrointestinal carcinoma in the future.

20.
Theranostics ; 10(22): 9923-9936, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929325

RESUMO

Rationale: Hepatocellular carcinoma (HCC) has been increasingly recognized in nonalcoholic steatohepatitis (NASH) patients. Fibroblast growth factor 21 (FGF21) is reported to prevent NASH and delay HCC development. In this study, the effects of FGF21 on NASH progression and NASH-HCC transition and the potential mechanism(s) were investigated. Methods: NASH models and NASH-HCC models were established in FGF21Knockout (KO) mice to evaluate NASH-HCC transition. IL-17A signaling was investigated in the isolated hepatic parenchymal cells, splenocytes, and hepatocyte and HCC cell lines. Results: Lack of FGF21 caused significant up-regulation of the hepatocyte-derived IL-17A via Toll-like receptor 4 (TLR4) and NF-κB signaling. Restoration of FGF21 alleviated the high NAFLD activity score (NAS) and attenuated the TLR4-triggered hepatocyte-IL-17A expression. The HCC nodule number and tumor size were significantly alleviated by treatments of anti-IL-17A antibody. Conclusion: This study revealed a novel anti-inflammatory mechanism of FGF21 via inhibiting the hepatocyte-TLR4-IL-17A signaling in NASH-HCC models. The negative feedback loop on the hepatocyte-TLR4-IL-17A axis could be a potential anti-carcinogenetic mechanism for FGF21 to prevent NASH-HCC transition.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Interleucina-17/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor 4 Toll-Like/metabolismo , Células 3T3 , Animais , Carcinoma Hepatocelular/patologia , Células Cultivadas , Feminino , Hepatócitos/patologia , Humanos , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/patologia , Estudos Prospectivos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA