Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Pharmaceutics ; 16(9)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39339214

RESUMO

Using an endogenous carrier is the best method to address the biocompatibility of carriers in the drug delivery field. Herein, we prepared a glutathione-responsive paclitaxel prodrug micelle based on an endogenous molecule of L-glutathione oxidized (GSSG) for cancer therapy using one-pot synthesis. The carboxyl groups in L-glutathione oxidized were reacted with the hydroxyl group in paclitaxel (PTX) using the catalysts dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP). Then, the amino-polyethylene glycol monomethyl ether (mPEG-NH2) was conjugated with GSSG to prepare PTX-GSSG-PEG. The structure of PTX-GSSG-PEG was characterized using infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), and mass spectrometry (MS). The drug release kinetics of PTX within PTX-GSSG-PEG were quantified using ultraviolet spectroscopy (UV-Vis). The size of the PTX-GSSG-PEG micelles was 83 nm, as evaluated using dynamic light scattering (DLS), and their particle size remained stable in a pH 7.4 PBS for 7 days. Moreover, the micelles could responsively degrade and release PTX in a reduced glutathione environment. The drug loading of PTX in PTX-GSSG-PEG was 13%, as determined using NMR. Furthermore, the cumulative drug release rate of PTX from the micelles reached 72.1% in a reduced glutathione environment of 5 mg/mL at 120 h. Cell viability experiments demonstrated that the PTX-GSSG-PEG micelles could induce the apoptosis of MCF-7 cells. Additionally, cell uptake showed that the micelles could distribute to the cell nuclei within 7 h. To sum up, with this glutathione-responsive paclitaxel prodrug micelle based on the endogenous molecule GSSG, it may be possible to develop novel nanomedicines in the future.

2.
J Lipid Res ; 65(9): 100611, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39094773

RESUMO

Mitochondrial fatty acid oxidation serves as an essential process for cellular survival, differentiation, proliferation, and energy metabolism. Numerous studies have utilized etomoxir (ETO) for the irreversible inhibition of carnitine palmitoylcarnitine transferase 1 (CPT1), which catalyzes the rate-limiting step for mitochondrial long-chain fatty acid ß-oxidation to examine the bioenergetic roles of mitochondrial fatty acid metabolism in many tissues in multiple diverse disease states. Herein, we demonstrate that intact mitochondria robustly metabolize ETO to etomoxir-carnitine (ETO-carnitine) prior to nearly complete ETO-mediated inhibition of CPT1. The novel pharmaco-metabolite, ETO-carnitine, was conclusively identified by accurate mass, fragmentation patterns, and isotopic fine structure. On the basis of these data, ETO-carnitine was successfully differentiated from isobaric structures (e.g., 3-hydroxy-C18:0 carnitine and 3-hydroxy-C18:1 carnitine). Mechanistically, generation of ETO-carnitine from mitochondria required exogenous Mg2+, ATP or ADP, CoASH, and L-carnitine, indicating that thioesterification by long-chain acyl-CoA synthetase to form ETO-CoA precedes its conversion to ETO-carnitine by CPT1. CPT1-dependent generation of ETO-carnitine was substantiated by an orthogonal approach using ST1326 (a CPT1 inhibitor), which effectively inhibits mitochondrial ETO-carnitine production. Surprisingly, purified ETO-carnitine potently inhibited calcium-independent PLA2γ and PLA2ß as well as mitochondrial respiration independent of CPT1. Robust production and release of ETO-carnitine from HepG2 cells incubated in the presence of ETO was also demonstrated. Collectively, this study identifies the chemical mechanism for the biosynthesis of a novel pharmaco-metabolite of ETO, ETO-carnitine, that is generated by CPT1 in mitochondria and likely impacts multiple downstream (non-CPT1 related) enzymes and processes in multiple subcellular compartments.


Assuntos
Carnitina O-Palmitoiltransferase , Carnitina , Compostos de Epóxi , Mitocôndrias , Humanos , Carnitina/metabolismo , Compostos de Epóxi/farmacologia , Compostos de Epóxi/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Animais , Respiração Celular/efeitos dos fármacos
3.
Anal Chem ; 96(29): 12181-12188, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38975840

RESUMO

New strategies for the simultaneous and portable detection of multiple enzyme activities are highly desirable for clinical diagnosis and home care. However, the methods developed thus far generally suffer from high costs, cumbersome procedures, and heavy reliance on large-scale instruments. To satisfy the actual requirements of rapid, accurate, and on-site detection of multiple enzyme activities, we report herein a smartphone-assisted programmable microfluidic paper-based analytical device (µPAD) that utilizes colorimetric and photothermal signals for simultaneous, accurate, and visual quantitative detection of alkaline phosphatase (ALP) and butyrylcholinesterase (BChE). Specifically, the operation of this µPAD sensing platform is based on two sequential steps. Cobalt-doped mesoporous cerium oxide (Co-m-CeO2) with remarkable peroxidase-like activities under neutral conditions first catalytically decomposes H2O2 for effectively converting colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB). The subsequent addition of ALP or BChE to their respective substrates produces a reducing substance that can somewhat inhibit the oxTMB transformation for compromised colorimetric and photothermal signals of oxTMB. Notably, these two-step bioenzyme-nanozyme cascade reactions strongly support the straightforward and excellent processability of this platform, which exhibit lower detection limits for ALP and BChE with a detection limit for BChE an order of magnitude lower than those of the other reported paper-based detection methods. The practicability and efficiency of this platform are further demonstrated through the analysis of clinical serum samples. This innovative platform exhibits great potential as a facile yet robust approach for simultaneous, accurate, and on-site visual detection of multiple enzyme activities in authentic samples.


Assuntos
Fosfatase Alcalina , Butirilcolinesterase , Colorimetria , Papel , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/análise , Fosfatase Alcalina/química , Humanos , Butirilcolinesterase/metabolismo , Butirilcolinesterase/sangue , Dispositivos Lab-On-A-Chip , Benzidinas/química , Smartphone , Cério/química , Cobalto/química , Técnicas Analíticas Microfluídicas/instrumentação , Limite de Detecção , Ensaios Enzimáticos/métodos , Ensaios Enzimáticos/instrumentação , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise
4.
Infect Med (Beijing) ; 3(2): 100111, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948389

RESUMO

Background: Swift and accurate detection of Vibrio parahaemolyticus, which is a prominent causative pathogen associated with seafood contamination, is required to effectively combat foodborne disease and wound infections. The toxR gene is relatively conserved within V. parahaemolyticus and is primarily involved in the expression and regulation of virulence genes with a notable degree of specificity. The aim of this study was to develop a rapid, simple, and constant temperature detection method for V. parahaemolyticus in clinical and nonspecialized laboratory settings. Methods: In this study, specific primers and CRISPR RNA were used to target the toxR gene to construct a reaction system that combines recombinase polymerase amplification (RPA) with CRISPR‒Cas13a. The whole-genome DNA of the sample was extracted by self-prepared sodium dodecyl sulphate (SDS) nucleic acid rapid extraction reagent, and visual interpretation of the detection results was performed by lateral flow dipsticks (LFDs). Results: The specificity of the RPA-CRISPR/Cas13a-LFD method was validated using V. parahaemolyticus strain ATCC-17802 and six other non-parahaemolytic Vibrio species. The results demonstrated a specificity of 100%. Additionally, the genomic DNA of V. parahaemolyticus was serially diluted and analysed, with a minimum detectable limit of 1 copy/µL for this method, which was greater than that of the TaqMan-qPCR method (102 copies/µL). The established methods were successfully applied to detect wild-type V. parahaemolyticus, yielding results consistent with those of TaqMan-qPCR and MALDI-TOF MS mass spectrometry identification. Finally, the established RPA-CRISPR/Cas13a-LFD method was applied to whole blood specimens from mice infected with V. parahaemolyticus, and the detection rate of V. parahaemolyticus by this method was consistent with that of the conventional PCR method. Conclusions: In this study, we describe an RPA-CRISPR/Cas13a detection method that specifically targets the toxR gene and offers advantages such as simplicity, rapidity, high specificity, and visual interpretation. This method serves as a valuable tool for the prompt detection of V. parahaemolyticus in nonspecialized laboratory settings.

5.
Cell ; 187(13): 3445-3459.e15, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38838668

RESUMO

Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.


Assuntos
Mecanotransdução Celular , Imagem Individual de Molécula , Animais , Humanos , Camundongos , Fenômenos Biomecânicos , Adesão Celular , DNA/química , DNA/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Microscopia de Força Atômica/métodos , Imagem Individual de Molécula/métodos , Linhagem Celular , Sobrevivência Celular , Pareamento de Bases , Calibragem
6.
Microb Ecol ; 87(1): 43, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363394

RESUMO

Biological soil crusts (biocrusts) are considered "desert ecosystem engineers" because they play a vital role in the restoration and stability maintenance of deserts, including those cold sandy land ecosystems at high latitudes, which are especially understudied. Microorganisms participate in the formation and succession of biocrusts, contributing to soil properties' improvement and the stability of soil aggregates, and thus vegetation development. Accordingly, understanding the composition and successional characteristics of microorganisms is a prerequisite for analyzing the ecological functions of biocrusts and related applications. Here, the Hulun Buir Sandy Land region in northeastern China-lying at the highest latitude of any sandy land in the country-was selected for study. Through a field investigation and next-generation sequencing (Illumina MiSeq PE300 Platform), our goal was to assess the shifts in diversity and community composition of soil bacteria and fungi across different stages during the succession of biocrusts in this region, and to uncover the main factors involved in shaping their soil microbial community. The results revealed that the nutrient enrichment capacity of biocrusts for available nitrogen, total nitrogen, total phosphorus, total content of water-soluble salt, available potassium, soil organic matter, and available phosphorus was progressively enhanced by the succession of cyanobacterial crusts to lichen crusts and then to moss crusts. In tandem, soil bacterial diversity increased as biocrust succession proceeded but fungal diversity decreased. A total of 32 bacterial phyla and 11 fungal phyla were identified, these also known to occur in other desert ecosystems. Among those taxa, the relative abundance of Proteobacteria and Cyanobacteria significantly increased and decreased, respectively, along the cyanobacterial crust-lichen-moss crust successional gradient. However, for Actinobacteria, Chloroflexi, and Acidobacteria their changed relative abundance was significantly hump-shaped, increasing in the shift from cyanobacterial crust to lichen crust, and then decreasing as lichen crust shifted to moss crust. In this process, the improved soil properties effectively enhanced soil bacterial and fungal community composition. Altogether, these findings broaden our understanding about how soil microbial properties can change during the succession of biocrusts in high-latitude, cold sandy land ecosystems.


Assuntos
Cianobactérias , Líquens , Microbiota , Ecossistema , Solo , Areia , Microbiologia do Solo , Nitrogênio , Fósforo , China
7.
Chemosphere ; 352: 141515, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387659

RESUMO

Anaerobically digested swine wastewater (ASW) purification by microalgae provides a promising strategy for nutrients recovery, biomass production and CO2 capture. However, the characteristics of ASW from different cleaning processes vary greatly. At present, the cultivation of microalgae in ASW from different manure cleaning processes is rarely investigated and compared. That may bring uncertainty for microalgae growth using different ASW in large-scale application. Thus, the ASW from three cleaning processes were tested for cultivating microalgae, including manure dry collection (I), water flushing (II) and water submerging processes (III). The characteristics of ASW from three manure cleaning processes varied greatly such as nutrient and heavy metals levels. High concentration of ammonia and copper in ASW significantly inhibited microalgae growth. Fortunately, the supply of high CO2 (10%) effectively alleviated negative influences, ensuring microalgal growth at low dilution ratio. The characteristics of three ASW resulted in significant differences in microalgae growth and biomass components. The maximal biomass production in optimal diluted ASW-I, II and III reached 1.46 g L-1, 2.19 g L-1 and 2.47 g L-1, respectively. The removal of organic compounds, ammonia and phosphorus by optimal microalgae growth in diluted ASW-I, II and III was 50.6%/94.2%/64.7%, 63.7%/82.3%/57.6% and 83.2%/91.7%/59.7%, respectively. The culture in diluted ASW-I, II and III obtained the highest lipids production of 12.1 mg L-1·d-1, 16.5 mg L-1·d-1 and 19.4 mg L-1·d-1, respectively. The analysis of lipids compositions revealed that the proportion of saturated fatty acids accounted for 36.4%, 32.4% and 27.9 % in optimal diluted ASW-I, II and III, as ideal raw materials for biodiesel production.


Assuntos
Clorofíceas , Poluentes Ambientais , Microalgas , Scenedesmus , Animais , Suínos , Águas Residuárias , Biomassa , Esterco , Amônia , Dióxido de Carbono , Nitrogênio , Ácidos Graxos , Biocombustíveis , Água
8.
Acta Biomater ; 176: 1-27, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232912

RESUMO

Hypoxia is a common feature of most solid tumors, which promotes the proliferation, invasion, metastasis, and therapeutic resistance of tumors. Researchers have been developing advanced strategies and nanoplatforms to modulate tumor hypoxia to enhance therapeutic effects. A timely review of this rapidly developing research topic is therefore highly desirable. For this purpose, this review first introduces the impact of hypoxia on tumor development and therapeutic resistance in detail. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are also systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We provide a detailed discussion of the rationale and research progress of these strategies. Through a review of current trends, it is hoped that this comprehensive overview can provide new prospects for clinical application in tumor treatment. STATEMENT OF SIGNIFICANCE: As a common feature of most solid tumors, hypoxia significantly promotes tumor progression. Advanced nanoplatforms have been developed to modulate tumor hypoxia to enhanced therapeutic effects. In this review, we first introduce the impact of hypoxia on tumor progression. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We discuss the rationale and research progress of the above strategies in detail, and finally introduce future challenges for treatment of hypoxic tumors. By reviewing the current trends, this comprehensive overview can provide new prospects for clinical translatable tumor therapy.


Assuntos
Neoplasias , Hipóxia Tumoral , Humanos , Neoplasias/patologia , Hipóxia Celular , Hipóxia , Microambiente Tumoral
9.
Int J Biol Macromol ; 254(Pt 1): 127814, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918590

RESUMO

Biomass aerogels are a promising kind of environment-friendly thermal insulation material. However, the flammability, poor water resistance, and thermal instability of biomass aerogels limit their applications. Herein, freeze-drying and thermal imidization were used to create konjac glucomannan (KGM), boron nitride (BN), and polyimide (PI)-based aerogels with a semi-interpenetrating network structure. The introduction of BN was beneficial to improve the mechanical properties and thermal stability of aerogels. The imidization process of PI improved the hydrophobicity, mechanical property, and flame retardancy of the aerogels. The synergistic effect of PI and BN reduced the peak heat release rate and total heat release rate of KGM-based aerogel by 55.8 % and 35 %, respectively, and endowed aerogel with good self-extinguishing performance. Moreover, the results of thermal conductivity and infrared thermal imaging demonstrated that the aerogels had excellent thermal insulation properties, and could effectively manage thermal energy over a wide range of temperatures. This study provides a simple method for the preparation of heat-insulating aerogel with high fire safety, which has broad application prospects in the field of energy saving and emission reduction.


Assuntos
Temperatura Alta , Mananas , Biomassa , Liofilização
10.
ACS Appl Mater Interfaces ; 15(48): 55379-55391, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38058112

RESUMO

Chemodynamic therapy (CDT) has witnessed significant advancements in recent years due to its specific properties. Its association with photodynamic therapy (PDT) has also garnered increased attention due to its mutually reinforcing effects. However, achieving further enhancement of the CDT/PDT efficacy remains a major challenge. In this study, we have developed an integrated nanosystem comprising a Fenton catalyst and multifunctional photosensitizers to achieve triply enhanced CDT/PDT through photothermal effects, H2O2 elevation, and GSH consumption. We prepared nano-ZIF-8 vesicles as carriers to encapsulate ferrocene-(phenylboronic acid pinacol ester) conjugates (Fc-BE) and photosensitizers IR825. Subsequently, cinnamaldehyde-modified hyaluronic acid (HA-CA) was coated onto ZIF-8 through metal coordination interactions, resulting in the formation of active targeting nanoparticles (NPs@Fc-BE&IR825). Upon cellular internalization mediated by CD44 receptors, HA-CA elevated H2O2 levels, while released Fc-BE consumed GSH and catalyzed H2O2 to generate highly cytotoxic hydroxyl radicals (·OH). Furthermore, NIR irradiation led to increased ·OH production and the generation of singlet oxygen (1O2), accompanied by a greater GSH consumption. This accelerated and strengthened amplification of oxidative stress can be harnessed to develop highly effective CDT/PDT nanoagents.


Assuntos
Nanopartículas Multifuncionais , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Peróxido de Hidrogênio , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral , Glutationa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA