Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Langmuir ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743262

RESUMO

The synergistic effect between bimetallic catalysts has been confirmed as an effective method for activating persulfate (PMS). Therefore, we immobilized copper-cobalt on chitosan to prepare bimetallic carbon catalysts for PMS activation and degradation of reactive dyes. Experimental results demonstrate that the CuCo-CTs/PMS catalytic degradation system exhibits excellent degradation performance toward various types of reactive dyes (e.g., Ethyl violet, Chlortalidone, and Di chlorotriazine), with degradation rates reaching 90% within 30 min. CuCo-CTs exhibit high catalytic activity over a wide pH range of 3-11 at room temperature and under static conditions, degrading over 92% of RV5 within 60 min. ultraviolet-visible (UV-vis) spectroscopy and color changes in the dye solution confirm the effective degradation of RV5, with a degradation rate of 97.2% within 10 min. Additionally, CuCo-CTs demonstrate good stability and reusability, maintaining a degradation rate of 92.8% after eight cycles. Kinetic studies indicate that the degradation follows pseudo-first-order kinetics. Furthermore, based on the results of radical scavenging experiments, the catalytic degradation mechanism of the dye involves both radical and nonradical pathways, with 1O2 identified as the primary active species. This study provides insights and experimental evidence for the application of persulfate oxidation in the treatment of dyeing wastewater.

2.
Int J Biol Macromol ; 263(Pt 2): 130512, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423418

RESUMO

Dressings seamlessly attached to the open wound bed are necessary for fully unleashing the dressing healing ability, as leaving the voids beneath the dressing poses infection hazards. The present study prepared an instant mucus dressing (IMD) of polyethylene oxide (PEO) reinforced by chitosan (CS) nanofiber scaffold, which formed by immersing PEO/CS nanofiber mat in water. The PEO/CS nanofiber mat were fabricated by the solution blow spinning (SBS) method using PEO and CS mixed solutions. Attenuated total reflection Fourier transform infrared spectroscopy (FTIR-ATR), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and differential scan calorimetry (DSC) analyses indicate that PEO macromolecules formed the most of nanofiber shell due to their lower surface tension while CS macromolecules stayed mainly inside the fiber as the core. When such a PEO/CS nanofiber mat was immersed in water, PEO swelled to form mucus dressing reinforced by CS inside the nanofiber, which was fluidic and able to fully fill the voids on the wound. In vivo rat experiment verified that the dressing significantly accelerated the open wound healing through seamlessly attaching of mucus to the open wound and providing moist environment. The dressings exhibit good platelets and whole blood cells adhesion properties, excellent hemostasis function and no cytotoxicity. This instant mucus dressing provided a new perspective for manufacturing high performance open wound dressings.


Assuntos
Quitosana , Nanofibras , Ratos , Animais , Quitosana/química , Polietilenoglicóis/química , Nanofibras/química , Cicatrização , Bandagens , Água , Antibacterianos/química
3.
Int J Biol Macromol ; 261(Pt 2): 129929, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311139

RESUMO

Recently, metal-organic frameworks (MOFs) have been widely developed due to the rich porosity, excellent framework structure and multifunctional nature. Meanwhile, a series of MOFs crystals and MOF-based composites have been emerged. However, the widespread applications of MOFs are hindered by challenges such as rigidity, fragility, solution instability, and processing difficulties. In this study, we addressed these limitations by employing an in-situ green growth approach to prepare a zeolitic imidazolate frameworks-8@poly (γ-glutamic acid) hydrogel (ZIF-8@γ-PGA) with hierarchical structures. This innovative method effectively resolves the inherent issues associated with MOFs. Furthermore, the ZIF-8@γ-PGA hydrogel is utilized for dye adsorption, demonstrating an impressive maximum adsorption capacity of 1130 ± 1 mg/g for methylene blue (MB). The adsorption behavior exhibits an excellent agreement with both the kinetic model and isotherm. Meanwhile, because the adsorbent raw materials are all green non-toxic materials, multiple applications of materials can also be realized. Significantly, the results of antibacterial experiments showed that the ZIF-8@γ-PGA hydrogel after in-situ growth of ZIF-8 had better antibacterial properties. Thus, the ZIF-8@γ-PGA hydrogel has great potential for development in wound dressings, sustained drug owing to its biocompatibility and antibacterial activity.


Assuntos
Estruturas Metalorgânicas , Zeolitas , Hidrogéis/química , Ácido Glutâmico , Adsorção , Zeolitas/química , Antibacterianos
4.
Int J Biol Macromol ; 261(Pt 2): 129804, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296151

RESUMO

With the diversification of people's demand for textile functions, the preparation of multifunctional fabrics is still a current research hotspot. In this study, the water-soluble epoxy compound N1, N6-bis(oxiran-2-ylmethyl) hexane-1,6-diamine (EH) was introduced into cellulose macromolecule blended fabrics (cotton/modal) by two-phase vaporization technique, resulting in excellent wrinkle, hydrophobicity, and certain UV protection effects. It could be observed by electron microscopy that EH formed a polymer film on the fiber surface. In addition, the results of EDS scans and fiber swelling rate tests showed that EH was uniformly distributed and formed a cross-linked structure in the amorphous zones inside the fibers. Compared with the control fabrics, the wrinkle recovery angle of the EH-treated fabric was increased by 39.7 %. The fabrics could reach a contact angle of 136.9°, providing excellent hydrophobic effect. In addition, the fabrics achieved certain UV protection effects (UPF of 50+). The EH-treated fabrics were less stabilized in strong acid and alkali conditions, but exhibited greater durability in other environments. In summary, the internal and external synergistic effects of EH in forming polymer films on the fibers surface and internal cross-linking structures provided a cleaner, simple, and feasible method for the preparation of multifunctional cellulose macromolecule fibers textiles.


Assuntos
Celulose , Óxido de Etileno , Humanos , Celulose/química , Têxteis , Diaminas
5.
Antonie Van Leeuwenhoek ; 117(1): 13, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170218

RESUMO

A Gram-stain-negative, motile (by single polar flagellum) and rod-shaped bacterium, designated W1-6T, was isolated from a sediment of drainage ditch in winery in Guiyang, south-western China. Strain W1-6T showed the highest 16S rRNA gene sequence similarities with the type strain of Acidovorax wautersii (98.1%) and Simplicispira lacusdiani (97.9%). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain W1-6T was placed adjacent to the members of the genus Simplicispira and formed a separat subclade. Cells showed oxidase and catalase negative reactions. The only respiratory quinone detected was ubiquinone-8 (Q-8). Summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0 and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) were predominant cellular fatty acids (> 10%) of strain W1-6T. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and five unidentified phospholipids were found in the polar lipid extraction. The genomic DNA G + C content was 65.6%. Strain W1-6T shared the highest digital DNA-DNA hybridization [dDDH, (27.6%)] and average nucleotide identity [ANI (84.3%)] values with the type strain of S. lacusdiani. The dDDH and ANI values were below the cutoff level (dDDH 70%; ANI 95-96%) for species delineation. The polyphasic characteristics indicated that the strain W1-6T represents a novel species of the genus Simplicispira, for which the name Simplicispira sedimenti sp. nov. is proposed. The type strain is W1-6T (= CGMCC 1.16274T = NBRC 115624T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , China , Ubiquinona , DNA , Drenagem , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética
6.
Small ; : e2310046, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183373

RESUMO

Hydrogels are widely used in tissue engineering, soft robotics and wearable electronics. However, it is difficult to achieve both the required toughness and stiffness, which severely hampers their application as load-bearing materials. This study presents a strategy to develop a hard and tough composite hydrogel. Herein, flexible SiO2 nanofibers (SNF) are dispersed homogeneously in a polyvinyl alcohol (PVA) matrix using the synergistic effect of freeze-drying and annealing through the phase separation, the modulation of macromolecular chain movement and the promotion of macromolecular crystallization. When the stress is applied, the strong molecular interaction between PVA and SNF effectively disperses the load damage to the substrate. Freeze-dried and annealed-flexible SiO2 nanofibers/polyvinyl alcohol (FDA-SNF/PVA) reaches a preferred balance between enhanced stiffness (13.71 ± 0.28 MPa) and toughness (9.9 ± 0.4 MJ m-3 ). Besides, FDA-SNF/PVA hydrogel has a high tensile strength of 7.84 ± 0.10 MPa, super elasticity (no plastic deformation under 100 cycles of stretching), fast deformation recovery ability and excellent mechanical properties that are superior to the other tough PVA hydrogels, providing an effective way to optimize the mechanical properties of hydrogels for potential applications in artificial tendons and ligaments.

7.
Sci Total Environ ; 914: 169851, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185165

RESUMO

The release of rare earth elements (REEs) from mining wastes and their applications has significant environmental implications, necessitating the development of effective prevention and reclamation strategies. The mobility of REEs in groundwater due to microorganisms has garnered considerable attention. In this study, a La(III) resistant actinobacterium, Micromonospora saelicesensis KLBMP 9669, was isolated from REE enrichment soil in GuiZhou, China, and evaluated for its ability to adsorb and biomineralize La(III). The findings demonstrated that M. saelicesensis KLBMP 9669 immobilized La(III) through the physical and chemical interactions, with immobilization being influenced by the initial La(III) concentration, biomass, and pH. The adsorption kinetics followed a pseudo-second-order rate model, and the adsorption isotherm conformed to the Langmuir model. La(III) adsorption capacity of this strain was 90 mg/g, and removal rate was 94 %. Scanning electron microscope (SEM) coupled with energy dispersive X-ray spectrometer (EDS) analysis revealed the coexistence of La(III) with C, N, O, and P. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) investigations further indicated that carboxyl, amino, carbonyl, and phosphate groups on the mycelial surface may participate in lanthanum adsorption. Transmission electron microscopy (TEM) revealed that La(III) accumulation throughout the M. saelicesensis KLBMP 9669, with some granular deposits on the mycelial surface. Selected area electron diffraction (SAED) confirmed the presence of LaPO4 crystals on the M. saelicesensis KLBMP 9669 biomass after a prolonged period of La(III) accumulation. This post-sorption nano-crystallization on the M. saelicesensis KLBMP 9669 mycelial surface is expected to play a crucial role in limiting the bioimmobilization of REEs in geological repositories.


Assuntos
Metais Terras Raras , Micromonospora , Poluentes Químicos da Água , Fósforo , Biomineralização , Minerais , Adsorção , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
8.
Ecotoxicol Environ Saf ; 262: 115190, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37390724

RESUMO

Heavy metal pollution poses a serious hazard to the soil bacterial community. The purpose of this study is to understand the characteristics of soil heavy metal pollution in lead-zinc mines in karst areas and the response of Pb, Zn, Cd, and As-induced composite pollution to soil microorganisms. This paper selected soil samples from the lead-zinc mining area of Xiangrong Mining Co., Ltd., Puding County, Guizhou Province, China. The soil in the mining area is contaminated by multiple heavy metals such as Pb, Zn, Cd and As. The average levels of Pb, Zn, Cd and As in the Pb-Zn mining soil were 14.5, 7.8, 5.5 and 4.4 times higher than the soil background in this area, respectively. Bacterial community structures and functions were analyzed using 16 S rRNA high-throughput sequencing technology and the PICRUSt method. A total of 19 bacterial phyla, 34 classes and 76 orders were detected in the tested soil. At the phylum level, the Proteobacteria are the dominant flora of the soil in the tailings reservoir area of the lead-zinc mine, respectively GWK1 (49.64%), GWK2 (81.89%), GWK3 (95.16%); and for the surrounding farmland soil, the Proteobacteria, Actinobacteriota, Acidobacteriota, Chloroflexi and Firmicutes are the most abundant in five bacterial groups. RDA analyses revealed that the heavy metal pollution of the lead-zinc mining area has a significant impact on the diversity of soil microorganisms. As the distance from the mining area increased, the heavy metal comprehensive pollution and potential risk value decreased, and the bacterial diversity increased. Additionally, various types of heavy metals have different effects on bacterial communities, and soil heavy metal content will also change the bacterial community structure. Proteobacteria positively related to Pb, Cd, and Zn, therefore, Proteobacteria were highly resistant to heavy metals. PICRUSt analysis suggested that heavy metals significantly affect the metabolic function of microorganisms. Microorganisms might generate resistance and enable themselves to survive by increasing the transport of metal ions and excreting metal ions. These results can be used as a basis for the microbial remediation of heavy metal-contaminated farmland in mining areas.

9.
Funct Integr Genomics ; 23(2): 172, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212893

RESUMO

The cytochrome P450 superfamily of monooxygenases plays a major role in the evolution and diversification of plant natural products. The function of cytochrome P450s in physiological adaptability, secondary metabolism, and xenobiotic detoxification has been studied extensively in numerous plant species. However, their underlying regulatory mechanism in safflower still remained unclear. In this study, we aimed to elucidate the functional role of a putative CtCYP82G24-encoding gene in safflower, which suggests crucial insights into the regulation of methyl jasmonate-induced flavonoid accumulation in transgenic plants. The results showed that methyl jasmonate (MeJA) was associated with a progressive upregulation of CtCYP82G24 expression in safflower among other treatment conditions including light, dark, and polyethylene glycol (PEG). In addition, transgenic plants overexpressing CtCYP82G24 demonstrated increased expression level of other key flavonoid biosynthetic genes, such as AtDFR, AtANS, and AtFLS, and higher content of flavonoid and anthocyanin accumulation when compared with wild-type and mutant plants. Under exogenous MeJA treatment, the CtCYP82G24 transgenic overexpressed lines showed a significant spike in flavonoid and anthocyanin content compared with wild-type and mutant plants. Moreover, the virus-induced gene silencing (VIGS) assay of CtCYP82G24 in safflower leaves exhibited decreased flavonoid and anthocyanin accumulation and reduced expression of key flavonoid biosynthetic genes, suggesting a possible coordination between transcriptional regulation of CtCYP82G24 and flavonoid accumulation. Together, our findings confirmed the likely role of CtCYP82G24 during MeJA-induced flavonoid accumulation in safflower.


Assuntos
Carthamus tinctorius , Flavonoides , Antocianinas/metabolismo , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Molecules ; 28(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049967

RESUMO

Flavonoids are the most abundant class of secondary metabolites that are ubiquitously involved in plant development and resistance to biotic and abiotic stresses. Flavonoid biosynthesis involves multiple channels of orchestrated molecular regulatory factors. Methyl jasmonate (MeJA) has been demonstrated to enhance flavonoid accumulation in numerous plant species; however, the underlying molecular mechanism of MeJA-induced flavonoid biosynthesis in safflower is still not evident. In the present study, we revealed the underlying molecular basis of a putative F3'5'H gene from safflower imparting MeJA-induced flavonoid accumulation in transgenic plants. The constitutive expression of the CtF3'5'H1 gene was validated at different flowering stages, indicating their diverse transcriptional regulation through flower development in safflower. Similarly, the CtF3'5'H1-overexpressed Arabidopsis plants exhibit a higher expression level, with significantly increased anthocyanins and flavonoid content, but less proanthocyanidins than wild-type plants. In addition, transgenic plants treated with exogenous MeJA revealed the up-regulation of CtF3'5'H1 expression over different time points with significantly enhanced anthocyanin and flavonoid content as confirmed by HPLC analysis. Moreover, CtF3'5'H1- overexpressed Arabidopsis plants under methyl violet and UV-B irradiation also indicated significant increase in the expression level of CtF3'5'H1 with improved anthocyanin and flavonoid content, respectively. Noticeably, the virus-induced gene silencing (VIGS) assay of CtF3'5'H1 in safflower leaves also confirmed reduced anthocyanin accumulation. However, the CtF3'5'H1 suppression in safflower leaves under MeJA elicitation demonstrated significant increase in total flavonoid content. Together, our findings confirmed that CtF3'5'H1 is likely mediating methyl jasmonate-induced flavonoid biosynthesis in transgenic plants via enhanced anthocyanin accumulation.


Assuntos
Arabidopsis , Carthamus tinctorius , Antocianinas/metabolismo , Flavonoides/metabolismo , Oxigenases de Função Mista/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Cancer Med ; 12(8): 9527-9540, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015898

RESUMO

OBJECTIVES: This research aimed to explore the relationship between pre-treatment inflammatory markers and other clinical characteristics and the survival of small-cell lung cancer (SCLC) patients who received first-line platinum-based treatment and to construct nomograms for predicting overall survival (OS) and progression-free survival (PFS). METHODS: A total of 612 patients diagnosed with SCLC between March 2008 and August 2021 were randomly divided into two cohorts: a training cohort (n = 459) and a validation cohort (n = 153). Inflammatory markers, clinicopathological factors, and follow-up information of patients were collected for each case. Cox regression was used to conduct univariate and multivariate analyses and the independent prognostic factors were adopted to develop the nomograms. Harrell's concordance index (C-index) and time-dependent receiver operating characteristic curve were used to verify model differentiation, calibration curve was used to verify consistency, and decision curve analysis was used to verify the clinical application value. RESULTS: Our results showed that baseline C-reactive protein/albumin ratio, neutrophil/lymphocyte ratio, NSE level, hyponatremia, the efficacy of first-line chemotherapy, and stage were independent prognostic factors for both OS and PFS in SCLC. In the training cohort, the C-index of PFS and OS was 0.698 and 0.666, respectively. In the validation cohort, the C-index of PFS and OS was 0.727 and 0.747, respectively. The nomograms showed good predictability and high clinical value. Also, our new clinical models were superior to the US Veterans Administration Lung Study Group (VALG) staging for predicting the prognosis of SCLC. CONCLUSIONS: The two prognostic nomograms of SCLC including inflammatory markers, VALG stage, and other clinicopathological factors had good predictive value and could individually assess the survival of patients.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Prognóstico , Carcinoma de Pequenas Células do Pulmão/patologia , Nomogramas , Processos Grupais , Estadiamento de Neoplasias
12.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982470

RESUMO

C4H (cinnamate 4-hydroxylase) is a pivotal gene in the phenylpropanoid pathway, which is involved in the regulation of flavonoids and lignin biosynthesis of plants. However, the molecular mechanism of C4H-induced antioxidant activity in safflower still remains to be elucidated. In this study, a CtC4H1 gene was identified from safflower with combined analysis of transcriptome and functional characterization, regulating flavonoid biosynthesis and antioxidant defense system under drought stress in Arabidopsis. The expression level of CtC4H1 was shown to be differentially regulated in response to abiotic stresses; however, a significant increase was observed under drought exposure. The interaction between CtC4H1 and CtPAL1 was detected using a yeast two-hybrid assay and then verified using a bimolecular fluorescence complementation (BiFC) analysis. Phenotypic and statistical analysis of CtC4H1 overexpressed Arabidopsis demonstrated slightly wider leaves, long and early stem development as well as an increased level of total metabolite and anthocyanin contents. These findings imply that CtC4H1 may regulate plant development and defense systems in transgenic plants via specialized metabolism. Furthermore, transgenic Arabidopsis lines overexpressing CtC4H1 exhibited increased antioxidant activity as confirmed using a visible phenotype and different physiological indicators. In addition, the low accumulation of reactive oxygen species (ROS) in transgenic Arabidopsis exposed to drought conditions has confirmed the reduction of oxidative damage by stimulating the antioxidant defensive system, resulting in osmotic balance. Together, these findings have provided crucial insights into the functional role of CtC4H1 in regulating flavonoid biosynthesis and antioxidant defense system in safflower.


Assuntos
Arabidopsis , Carthamus tinctorius , Arabidopsis/metabolismo , Antioxidantes/metabolismo , Flavonoides/metabolismo , Carthamus tinctorius/genética , Cinamatos/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-36767302

RESUMO

Cropland is an essential strategic resource, for which landscape ecological security and multifunctionality evolution are related to regional stability and sustainable social development. However, few studies have explored the spatial heterogeneity of the coupling between the two from a multiregional and systematic perspective, and the interaction mechanisms have still not been thoroughly analyzed. In this study, a typical karst trough and valley area in the mountainous regions of southwest China was selected as the research object, and by establishing a multi-indicator evaluation system using a landscape pattern index, a multifunctional identification model, a coupled coordination model, and a geodetector model, the spatial variability in the evolutionary characteristics and the coupling and coordination of cropland landscape ecological security (CLES) and cropland multifunctionality (CM) in the mountainous regions of the southwest and their driving mechanisms were explored. The main results were as follows: (1) CLES in the mountainous areas of southwest China has undergone an evolutionary process of first declining and then slowly rising, with the characteristics of "fast declining in the high-value areas and slow rising in the low-value areas", while CM showed a spatial distribution of "high in the northwest and low in the northeast", with positive contributions originating from ecological functions. (2) Over the 20 years, the cropland coupling coordination degree (CCCD) values showed significant spatial heterogeneity, which was regionally expressed as ejective folds (EF) > TF (tight folds) > TLF (trough-like folds) > AF (anticlinorium folds). Low CCCD values were primarily found in the east, whereas high levels were primarily found in the west, with a rapidly diminishing trend. (3) There were differences in the driving mechanisms of CCDD in different landscapes, but GDP was still the determining factor and had a limiting effect. Hence, we call for the adoption of a "function over pattern" approach in areas with more development constraints and a "pattern over function" approach in areas with fewer development constraints. Ultimately, this study will contribute to the formation of a coupled cropland mechanism system described as the "multi-mechanisms drive, multi-elements integrated" system. In conclusion, this study can provide a better understanding of the relationship between cropland patterns and multifunctionality, which can help provide a basis for cropland conservation and landscape planning in similar mountainous areas and promote the achievement of sustainable agricultural development goals in the mountainous areas of southwest China.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Desenvolvimento Sustentável , China , Produtos Agrícolas , Ecossistema
14.
Cells Dev ; 174: 203827, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36758856

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by chronic bronchitis and emphysema. Cigarette smoke extract (CSE) is the predominant cause of COPD. This study aimed to investigate the effects of miR-29b and their underlying mechanisms in a COPD cell model. MiR-29b and DNMT3A expression in lung tissue samples (taken at least 5 cm away from the tumor lesion) of NSCLC cases with smoking (n = 30), without smoking (n = 30), and with COPD (with smoking) (n = 30) was researched by qRT-PCR. A medium containing 10 % CSE was employed to induce murine alveolar macrophage MH-S cells to establish COPD cells. 5-Aza-cdr (5-AZA-2'-deoxycytidine) was used to block DNMT3A. The relationship and interaction between miR-29b and DNMT3A were validated through the dual luciferase reporter assay. The expression levels of macrophage M1 polarization marker proteins iNOS and TNF-α, DNMT3A, and Klotho protein were monitored using western blotting. The methylation levels of the miR-29b precursor gene and Klotho promoter were detected by quantitative methylation-specific PCR (MS-qPCR). The levels of IL-1ß, IL-6, and TNF-α in cell culture medium were detected via ELISA. It was found that the expression of miR-29b was downregulated, as a result of increased DNA methylation, and that of DNMT3A was upregulated in the lung tissues of NSCLC cases with COPD (with smoking). DNMT3A expression was negatively correlated with miR-29b expression in the lung tissues of NSCLC cases with COPD (with smoking). In addition, miR-29b expression was distinctly downregulated in CSE-induced MH-S cells and inhibited CSE-induced M1 polarization and inflammation. Importantly, DNMT3A was identified as a direct target gene of miR-29b. MiR-29b is negatively regulated by DNMT3A-mediated DNA methylation. Moreover, Klotho expression was downregulated and the Klotho promoter methylation level was increased in lung tissues of NSCLC cases with COPD (with smoking). The negative feedback between miR-29b and DNMT3A modulates CSE-induced M1 polarization and inflammation in macrophages as well as Klotho promoter methylation in CSE-mediated MH-S. Collectively, these findings indicate that the miR-29b level in COPD controls Klotho methylation via DNMT3, which maybe a promising target for the treatment of COPD.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Inflamação/patologia
15.
J Integr Plant Biol ; 65(5): 1277-1296, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36598461

RESUMO

The regulatory mechanism of the MBW (MYB-bHLH-WD40) complex in safflower (Carthamus tinctorius) remains unclear. In the present study, we show that the separate overexpression of the genes CtbHLH41, CtMYB63, and CtWD40-6 in Arabidopsis thaliana increased anthocyanin and procyanidin contents in the transgenic plants and partially rescued the trichome reduction phenotype of the corresponding bhlh41, myb63, and wd40-6 single mutants. Overexpression of CtbHLH41, CtMYB63, or CtWD40-6 in safflower significantly increased the content of the natural pigment hydroxysafflor yellow A (HYSA) and negatively regulated safflower petal size. Yeast-two-hybrid, functional, and genetic assays demonstrated that the safflower E3 ligase CtBB1 (BIG BROTHER 1) can ubiquitinate CtbHLH41, marking it for degradation through the 26S proteasome and negatively regulating flavonoid accumulation. CtMYB63/CtWD40-6 enhanced the transcriptional activity of CtbHLH41 on the CtDFR (dihydroflavonol 4-reductase) promoter. We propose that the MBW-CtBB1 regulatory module may play an important role in coordinating HYSA accumulation with other response mechanisms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Carthamus tinctorius , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Front Microbiol ; 13: 1058067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504806

RESUMO

Introduction: Applications of organomineral fertilizer (OMF) are important measures for developing organic agriculture in karst mountain areas. However, the influence of OMF on the structure and function of soil microbial diversity and their relationship with crop yield and quality are still unclear. Methods: Based on soil science, crop science, and high-throughput sequencing methods, we investigated the changes of rhizosphere soil microbial communities of Perilla frutescens under different fertilization measures. Then, the relationship between P. frutescens yield and quality with soil quality was analyzed. Results: The results showed that the addition of OMF increased the amount of total carbon and total potassium in soil. OF, especially OMF, improved P. frutescens yield and quality (e.g., panicle number per plant, main panicle length, and unsaturated fatty acid contents). Both OF and OMF treatments significantly increased the enrichment of beneficial microorganism (e.g., Bacillus, Actinomadura, Candidatus_Solibacter, Iamia, Pseudallescheria, and Cladorrhinum). The symbiotic network analysis demonstrated that OMF strengthened the connection among the soil microbial communities, and the community composition became more stable. Redundancy analysis and structural equation modeling showed that the soil pH, available phosphorus, and available potassium were significantly correlated with soil microbial community diversity and P. frutescens yield and quality. Discussion: Our study confirmed that OMF could replace CF or common OF to improve soil fertility, crop yield and quality in karst mountain soils.

17.
Molecules ; 27(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432102

RESUMO

Flavonoids with significant therapeutic properties play an essential role in plant growth, development, and adaptation to various environments. The biosynthetic pathway of flavonoids has long been studied in plants; however, its regulatory mechanism in safflower largely remains unclear. Here, we carried out comprehensive genome-wide identification and functional characterization of a putative cytochrome P45081E8 gene encoding an isoflavone 2'-hydroxylase from safflower. A total of 15 CtCYP81E genes were identified from the safflower genome. Phylogenetic classification and conserved topology of CtCYP81E gene structures, protein motifs, and cis-elements elucidated crucial insights into plant growth, development, and stress responses. The diverse expression pattern of CtCYP81E genes in four different flowering stages suggested important clues into the regulation of secondary metabolites. Similarly, the variable expression of CtCYP81E8 during multiple flowering stages further highlighted a strong relationship with metabolite accumulation. Furthermore, the orchestrated link between transcriptional regulation of CtCYP81E8 and flavonoid accumulation was further validated in the yellow- and red-type safflower. The spatiotemporal expression of CtCYP81E8 under methyl jasmonate, polyethylene glycol, light, and dark conditions further highlighted its likely significance in abiotic stress adaption. Moreover, the over-expressed transgenic Arabidopsis lines showed enhanced transcript abundance in OE-13 line with approximately eight-fold increased expression. The upregulation of AtCHS, AtF3'H, and AtDFR genes and the detection of several types of flavonoids in the OE-13 transgenic line also provides crucial insights into the potential role of CtCYP81E8 during flavonoid accumulation. Together, our findings shed light on the fundamental role of CtCYP81E8 encoding a putative isoflavone 2'-hydroxylase via constitutive expression during flavonoid biosynthesis.


Assuntos
Arabidopsis , Carthamus tinctorius , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Estresse Fisiológico/genética , Arabidopsis/metabolismo
18.
Phys Chem Chem Phys ; 24(41): 25462-25479, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36250502

RESUMO

Nanoscale cold welding is a promising method in the bottom-up fabrication of nanodevices. Herein, cold welding mechanisms of Cu50Zr50 nanoporous amorphous alloys (NPAAs) are investigated by molecular dynamics simulations, along with the mechanical properties of the welded products. Effects of welding conditions and microstructural parameters are considered. Our results demonstrate that the welded joint has superior mechanical properties. The ultimate strength of the welded NPAAs can be as high as 94-99% that of the original NPAAs but 62-75% for the yield strength and elastic modulus. Voronoi analysis declares that the changes in atomic clusters of NPAAs caused by cold welding are mild. The welding conditions do not have remarkable influences on the mechanical responses of the welded structure. The NPAAs with smaller ligament sizes are more suitable for cold welding, benefiting from the size effect of amorphous alloys. We also successfully use cold welding to fabricate gradient NPAAs and repair fractured NPAAs. It is found that the ultimate tensile strength of the NPAAs changes very little with each successful cold welding. After ten fracture-welding cycles, the ultimate strength of the as-welded specimen is slightly lower than that of the raw materials.

19.
Langmuir ; 38(39): 12095-12102, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36150189

RESUMO

In view of the environmental pollution caused by the widespread use of reactive dyes in the printing and dyeing industry, the modified cotton fabric was loaded with the extremely stable metal-organic frame (MOF) material UiO-66 for removing reactive dyes from colored wastewater. UiO-66/cotton fabric was prepared by in situ synthesis, and its surface morphology and structure were analyzed by XRD, SEM, BET, and XPS. The adsorption performance of UiO-66/cotton fabric on reactive dyes was investigated by adsorbent dosage, adsorption time and temperature, dye concentration, pH, and so on. The results indicated that the adsorption equilibrium time of UiO-66/cotton fabric on reactive orange 16 was 120 min, and the removal rate was about 98%. The adsorption process belongs to simple molecular layer chemisorption and can be regarded as a spontaneous heat absorption reaction, which was consistent with the proposed secondary kinetic model and Langmuir isothermal adsorption model. In addition, the reactive dyes with a higher molecular weight of each sulfonic acid group are more hydrophobic, and the dyes are more likely to aggregate and deposit on the adsorbent surface by electrostatic attraction, hydrogen bonding, and π-π accumulation. Therefore, this work provides a potential UiO-66/cotton fabric application for the effective adsorption of reactive dyes in textile wastewater.

20.
Curr Microbiol ; 79(10): 316, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088496

RESUMO

A Gram-staining negative, aerobic, non-motile and rod-shaped bacterium, designated strain N-S-14T, was isolated from the sediment of a winery in Guiyang, south-western China and subjected to a polyphasic taxonomic characteristics. The cells showed oxidase-negative and catalase-negative reactions. Growth occurred at 5-45 °C (optimum 30 °C), pH 5.0-8.0 (optimum pH 6.0-7.0) and with 0-3% (w/v) NaCl on R2A medium. The major respiratory quinone was ubiquinone-8 (Q-8). The predominant cellular fatty acids (> 10.0%) were identified as iso-C15:0, iso-C17:0 and summed feature 9 (iso-C17:1ω9c or C16:0 10-methyl). The profile of polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid, one unidentified aminophospholipid, one unidentified aminolipid and one unidentified lipid. The genomic DNA G + C content was 67.5%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain N-S-14T should be affiliated to the genus Dyella and formed a clade with most closely related Dyella solisilvae DHG54T (98.3%) and Dyella halodurans DHOG02T (97.8%). The digital DNA-DNA hybridization values ranged from 17.7 to 27.1% and the ANI values ranged from 75.2 to 84.0% between strain N-S-14T and other members of the genus Dyella, respectively, and thus the results indicated that strain N-S-14T represented a novel genomic species belonging to the genus Dyella. The polyphasic taxonomic characteristics indicated that the strain N-S-14T represent a novel species of the genus Dyella, for which the name Dyella sedimenti sp. nov. (type strain N-S-14T = CGMCC 1.18717T = KCTC 82384T) is proposed.


Assuntos
Microbiologia do Solo , Xanthomonadaceae , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA