Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 11: 1265378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685981

RESUMO

Introduction: Bicuspid aortic valve (BAV) is the most prevalent congenital cardiovascular defect and known to cause thoracic aortic aneurysms (TAAs). To improve our understanding of BAV pathogenesis, we characterized the cellular composition of BAV tissues and identified molecular changes in each cell population. Methods: Tissue samples from two patients with BAV and two heart transplant donors were analyzed using single-cell RNA sequencing, assay for transposase-accessible chromatin using sequencing, and weighted gene coexpression network analysis for differential gene analysis. TAA-related changes were evaluated by comparing the proportion of each cell type and gene expression profiles between TAA and control tissues. Further, by combining our single-cell RNA sequencing data with publicly available data from genome-wide association studies, we determined critical genes for BAV. Results: We found 20 cell subpopulations in TAA tissues, including multiple subtypes of smooth muscle cells, fibroblasts, macrophages, and T lymphocytes. This result suggested that these cells play multiple functional roles in BAV development. Several differentially expressed genes, including CD9, FHL1y, HSP90AA1, GAS6, PALLD, and ACTA2, were identified. Discussion: We believe that this comprehensive assessment of the cellular composition of TAA tissues and the insights into altered gene expression patterns can facilitate identification of novel diagnostic biomarkers and therapeutic targets for BAV-associated TAA.

2.
Eur J Pharmacol ; 864: 172694, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563648

RESUMO

Ferulic acid (FA), a naturally derived phenolic compound, has antioxidant and antidepressant-like effects. It is still a challenge to study its mechanism due to the complexity of the pathophysiology of depression. In this study, ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used to perform metabolomics studies based on biochemical changes in differentiated rat pheochromocytoma (PC12) cells treated with corticosterone-induced neurological damage after FA treatment. A total of 31 metabolites were identified as potential biomarkers for corticosterone-induced PC12 cells injury. Among them, 24 metabolites were regulated after FA treatment. Pathway analysis revealed that these metabolites were mainly involved in the amino acid metabolism, energy metabolism and glycerophospholipid metabolism. In addition, based on the results of metabolomics, three cell signaling pathways related to glutamate were discovered. To further study the interactions between FA and major targets in three signaling pathways, a molecular docking method was employed. The results showed that FA had the strongest binding power with protein kinase B (AKT). Furthermore, the result of mRNA changes analyzed by quantitative real time RT-PCR indicated that AKT and protein kinase A (PKA) in the signaling pathway were up regulated after treatment with FA compared with model group. This study shows that strategies based on cell metabolomics associated with molecular docking and molecular biology is a helpful tool to elucidate the neuroprotective mechanism of FA.


Assuntos
Ácidos Cumáricos/farmacologia , Metabolômica , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Corticosterona/farmacologia , Simulação de Acoplamento Molecular , Células PC12 , Ratos
3.
Artigo em Inglês | MEDLINE | ID: mdl-30594827

RESUMO

Danggui-Sini Decoction (DSD) is one of the most widely used traditional Chinese medicine formulae (TCMF) for treating various diseases caused by cold coagulation and blood stasis due to its effect of nourishing blood to warm meridians in clinical use. However, studies of the mechanism of how it dispels blood stasis and its compatible regularity are challenging because of the complex pathophysiology of blood stasis syndrome (BSS) and the complexity of DSD, with multiple active ingredients acting on different targets. Observing variations of endogenous metabolites in rats with BSS after administering DSD may further our understanding of the mechanism of BSS and the compatible regularity of DSD. In this study, to understand the pathogenesis of BSS and assess the compatibility effects of DSD, an ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry-based untargeted metabolomics approach was used. Serum metabolic profiles in rats with BSS that was induced by an ice water bath associated with subcutaneous injection of epinephrine hydrochloride were compared with the intervention groups which were administered with DSD or its compatibility. Using pattern recognition analysis, a clear separation between the BSS model and control group was observed; DSD and its compatibility intervention groups were clustered closer toward the control than the model group, which corroborates results of hemorheology studies. In addition, 20 metabolites were considered as potential biomarkers associated with the development of BSS. Nine metabolites were regulated by DSD in intervening blood stasis, they were considered to be correlated with the effect of nourishing blood to warm meridians. Additionally, the results suggested that the intervention effect of DSD on BSS may involve regulating four pathways, namely, arachidonic acid metabolism, glycerophospholipid metabolism, bile acid biosynthesis, and pyruvate metabolism. Moreover, each functional unit (monarch, minister, and assistant) in DSD regulates different metabolites and metabolic pathways to achieve different effects on dispelling blood stasis; however, their intervention efficacies are inferior to the holistic formula, which may be due to the synergism of the bioactive ingredients in seven herbs of DSD. This study demonstrated that metabolomics is a powerful tool for evaluating the efficacy and compatibility effects of traditional Chinese medicine (TCM).


Assuntos
Viscosidade Sanguínea/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Animais , Biomarcadores/sangue , Medicamentos de Ervas Chinesas/administração & dosagem , Feminino , Medicina Tradicional Chinesa , Redes e Vias Metabólicas , Ratos , Ratos Sprague-Dawley
4.
J Pharm Biomed Anal ; 159: 252-261, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-29990893

RESUMO

Liver fibrosis is a common consequence of chronic liver diseases resulting from multiple etiologies. Furthermore, prolonged unresolved liver fibrosis may gradually progress to cirrhosis, and eventually evolve into hepatocellular carcinoma (HCC). Corydalis saxicola Bunting (CS), a type of traditional Chinese folk medicine, has been reported to have hepatoprotective effects on the liver. However, the exact mechanism of how it cures liver fibrosis requires further elucidation. In this work, an integrated approach combining proton nuclear magnetic resonance (1H-NMR)-based metabonomics and network pharmacology was adopted to elucidate the anti-fibrosis mechanism of CS. Metabonomic study of serum biochemical changes by carbon tetrachloride (CCl4)-induced liver fibrosis in rats after CS treatment were performed using 1H-NMR analysis. Metabolic profiling by means of partial least squares-discriminate analysis (PLS-DA) indicated that the metabolic perturbation caused by CCl4 was reduced after CS treatment. As a result, lipids, leucine, alanine, acetate, O-acetyl-glycoprotein and creatine were significantly restored after CS treatment, which regulated valine, leucine and isoleucine metabolism; arginine and proline metabolism; lipid metabolism and pyruvate metabolism. Additionally, 157 potential targets of CS and 265 targets of liver fibrosis were identified by means of network pharmacology. Subsequently, 5 target proteins, which are the intersection of potential CS targets and liver fibrosis targets, indicated that CS has potential anti-fibrosis effects through regulating alanine aminotransferase (ALT) activity, the farnesoid X receptor (FXR), cyclooxygenase-2 (COX-2), matrix metalloproteinase-1 (MMP-1) and angiotensinogen. Chelerythrine and sanguinarine were the potential active compounds in CS for treating liver fibrosis through regulating ALT activity. This study is the first report to study the anti-fibrosis effects of CS on the basis of combining a metabonomics and network pharmacology approaches, and it may be a potentially powerful tool to study the efficacy and mechanisms of traditional Chinese folk medicines.


Assuntos
Tetracloreto de Carbono/toxicidade , Corydalis , Cirrose Hepática/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Extratos Vegetais/uso terapêutico , Animais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/prevenção & controle , Masculino , Extratos Vegetais/isolamento & purificação , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
5.
J Pharm Biomed Anal ; 140: 199-209, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28363136

RESUMO

Chronic liver injury has been shown to cause liver fibrosis due to the sustained pathophysiological wound healing response of the liver, and eventually progresses to cirrhosis. The total alkaloids of Corydalis saxicola Bunting (TACS), a collection of important bioactive ingredients derived from the traditional Chinese folk medicine Corydalis saxicola Bunting (CS), have been reported to have protective effects on the liver. However, the underlying molecular mechanisms need further elucidation. In this study, the urinary metabonomics and the biochemical changes in rats with carbon tetrachloride (CCl4)-induced chronic liver injury due to treatment TACS or administration of the positive control drug-bifendate were studied via proton nuclear magnetic resonance (1H NMR) analysis. Partial least squares-discriminate analysis (PLS-DA) suggested that metabolic perturbation caused by CCl4 damage was recovered with TACS and bifendate treatment. A total of seven metabolites including 2-oxoglutarate, citrate, dimethylamine, taurine, phenylacetylglycine, creatinine and hippurate were considered as potential biomarkers involved in the development of CCl4-induced chronic liver injury. According to pathway analysis using identified metabolites and correlation network construction, the tricarboxylic acid (TCA) cycle, gut microbiota metabolism and taurine and hypotaurine metabolism were recognized as the most affected metabolic pathways associated with CCl4 chronic hepatotoxicity. Notably, the changes in 2-oxoglutarate, citrate, taurine and hippurate during the process of CCl4-induced chronic liver injury were significantly restored by TACS treatment, which suggested that TACS synergistically mediated the regulation of multiple metabolic pathways including the TCA cycle, gut microbiota metabolism and taurine and hypotaurine metabolism. This study could bring valuable insight to evaluating the efficacy of TACS intervention therapy, help deepen the understanding of the hepatoprotective mechanisms of TACS and enable optimal diagnosis of chronic liver injury.


Assuntos
Corydalis , Metabolômica , Alcaloides , Animais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Fígado , Ratos , Ratos Sprague-Dawley
6.
Mol Cancer Res ; 12(9): 1324-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24895412

RESUMO

UNLABELLED: Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates intracellular signaling networks for inhibition of apoptosis. Tetraspanin (CD63), a cell surface binding partner for TIMP-1, was previously shown to regulate integrin-mediated survival pathways in the human breast epithelial cell line MCF10A. In the current study, we show that TIMP-1 expression induces phenotypic changes in cell morphology, cell adhesion, cytoskeletal remodeling, and motility, indicative of an epithelial-mesenchymal transition (EMT). This is evidenced by loss of the epithelial cell adhesion molecule E-cadherin with an increase in the mesenchymal markers vimentin, N-cadherin, and fibronectin. Signaling through TIMP-1, but not TIMP-2, induces the expression of TWIST1, an important EMT transcription factor known to suppress E-cadherin transcription, in a CD63-dependent manner. RNAi-mediated knockdown of TWIST1 rescued E-cadherin expression in TIMP-1-overexpressing cells, demonstrating a functional significance of TWIST1 in TIMP-1-mediated EMT. Furthermore, analysis of TIMP-1 structural mutants reveals that TIMP-1 interactions with CD63 that activate cell survival signaling and EMT do not require the matrix metalloproteinase (MMP)-inhibitory domain of TIMP-1. Taken together, these data demonstrate that TIMP-1 binding to CD63 activates intracellular signal transduction pathways, resulting in EMT-like changes in breast epithelial cells, independent of its MMP-inhibitory function. IMPLICATIONS: TIMP-1's function as an endogenous inhibitor of MMP or as a "cytokine-like" signaling molecule may be a critical determinant for tumor cell behavior.


Assuntos
Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Proteínas Nucleares/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Proteína 1 Relacionada a Twist/metabolismo , Apoptose/genética , Neoplasias da Mama/patologia , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Epiteliais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Nucleares/genética , Transdução de Sinais , Tetraspanina 30 , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Proteína 1 Relacionada a Twist/genética
7.
PLoS One ; 7(6): e38773, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701711

RESUMO

Matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) regulate epithelial-mesenchymal transition (EMT) critical for the development of epithelial organs as well as cancer cell invasion. TIMP-1 is frequently overexpressed in several types of human cancers and serves as a prognostic marker. The present study investigates the roles of TIMP-1 on the EMT process and formation of the lumen-like structure in a 3D Matrigel culture of MDCK cells. We show that TIMP-1 overexpression effectively prevents cell polarization and acinar-like structure formation. TIMP-1 induces expression of the developmental EMT transcription factors such as SLUG, TWIST, ZEB1 and ZEB2, leading to downregulation of epithelial marker and upregulation of mesenchymal markers. Importantly, TIMP-1's ability to induce the EMT-like process is independent of its MMP-inhibitory domain. To our surprise, TIMP-1 induces migratory and invasive properties in MDCK cells. Here, we present a novel finding that TIMP-1 signaling upregulates MT1-MMP and MMP-2 expression, and potentiates MT1-MMP activation of pro-MMP-2, contributing to tumor cell invasion. In spite of the fact that TIMP-1, as opposed to TIMP-2, does not interact with and inhibit MT1-MMP, TIMP-1 may act as a key regulator of MT1-MMP/MMP-2 axis. Collectively, our findings suggest a model in which TIMP-1 functions as a signaling molecule and also as an endogenous inhibitor of MMPs. This concept represents a paradigm shift in the current view of TIMP-1/MT1-MMP interactions and functions during cancer development/progression.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Regulação da Expressão Gênica/fisiologia , Fenótipo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Proliferação de Células , Primers do DNA/genética , Cães , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Immunoblotting , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sais de Tetrazólio , Tiazóis
8.
EMBO J ; 25(17): 3934-42, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16917503

RESUMO

This study identified CD63, a member of the tetraspanin family, as a TIMP-1 interacting protein by yeast two-hybrid screening. Immunoprecipitation and confocal microscopic analysis confirmed CD63 interactions with TIMP-1, integrin beta1, and their co-localizations on the cell surface of human breast epithelial MCF10A cells. TIMP-1 expression correlated with the level of active integrin beta1 on the cell surface independent of cell adhesion. While MCF10A cells within a three-dimensional (3D) matrigel matrix form polarized acinar-like structures, TIMP-1 overexpression disrupted breast epithelial cell polarization and inhibited caspase-mediated apoptosis in centrally located cells, necessary for the formation and maintenance of the hollow acinar-like structures. Small hairpin RNA (shRNA)-mediated CD63 downregulation effectively reduced TIMP-1 binding to the cell surface, TIMP-1 co-localization with integrin beta1, and consequently reversed TIMP-1-mediated integrin beta1 activation, cell survival signaling and apoptosis inhibition. CD63 downregulation also restored polarization and apoptosis of TIMP-1 overexpressing MCF10A cells within a 3D-matrigel matrix. Taken together, the present study identified CD63 as a cell surface binding partner for TIMP-1, regulating cell survival and polarization via TIMP-1 modulation of tetraspanin/integrin signaling complex.


Assuntos
Antígenos CD/fisiologia , Integrina beta1/metabolismo , Proteínas de Membrana/metabolismo , Glicoproteínas da Membrana de Plaquetas/fisiologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Antígenos CD/metabolismo , Apoptose , Adesão Celular , Linhagem Celular , Membrana Celular/metabolismo , Polaridade Celular , Sobrevivência Celular , Regulação para Baixo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Biblioteca Gênica , Humanos , Glândulas Mamárias Humanas/citologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Ligação Proteica , Transdução de Sinais , Tetraspanina 30 , Técnicas do Sistema de Duplo-Híbrido
9.
Cancer Metastasis Rev ; 25(1): 99-113, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16680576

RESUMO

Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases (MMPs) and the balance between MMPs/TIMPs regulates the extracellular matrix (ECM) turnover and remodeling during normal development and pathogenesis. Increasing evidence indicates a much more complex role for TIMPs during tumor progression and angiogenesis, in addition to their regulation of MMP-mediated ECM degradation. In this article, we review both the MMP-dependent and -independent actions of TIMPs for the regulation of cell death, cell proliferation, and angiogenesis, with a particular emphasis on TIMP-1 in the regulation of tetraspanin/integrin-mediated cell survival signal transduction pathways.


Assuntos
Neoplasias/enzimologia , Transdução de Sinais , Inibidor Tecidual de Metaloproteinase-1/fisiologia , Inibidores Teciduais de Metaloproteinases/fisiologia , Animais , Antígenos CD/metabolismo , Apoptose , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Humanos , Integrina beta1/metabolismo , Inibidores de Metaloproteinases de Matriz , Camundongos , Modelos Biológicos , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Prognóstico , Tetraspanina 30
10.
Cancer Res ; 65(3): 898-906, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15705888

RESUMO

Tissue inhibitors of metalloproteinases (TIMPs) inhibit matrix metalloproteinases and some members of a disintegrin and metalloproteinase domain (ADAM) family. In addition, recent studies unveiled novel functions of TIMPs in the regulation of apoptosis. TIMP-1 inhibits intrinsic apoptosis by inducing TIMP-1 specific cell survival pathways involving focal adhesion kinase (FAK). TIMP-3, however, was shown to enhance extrinsic cell death by inhibiting the shedding of the cell surface death receptors mediated by tumor necrosis factor-alpha converting enzymes (TACE/ADAM-17). Here, we examined whether TIMP-1, an inhibitor of some of the ADAM family members, enhances the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced extrinsic apoptotic pathway. Surprisingly, we found that TIMP-1 effectively protects human breast epithelial cells from TRAIL-induced apoptosis, demonstrating opposite roles of TIMP-1 and TIMP-3 for the regulation of extrinsic apoptosis. TIMP-1 inhibition of TRAIL-induced apoptosis does not depend on its ability to inhibit matrix metalloproteinases or ADAM activities and is unrelated to its ability to stabilize active or decoy death receptors. Importantly, inhibition of PI 3-kinase signaling by wortmannin and down-regulation of FAK expression using siRNA significantly diminish TIMP-1 protection of human breast epithelial cells against TRAIL-induced extrinsic apoptosis. In addition, the in vitro three-dimensional culture studies showed that TIMP-1 inhibits lumen formation and apoptosis during morphogenesis of MCF10A acini. Taken together, these studies suggest that TIMP-1 may exert oncogenic activity in breast cancer through inhibition of both intrinsic and extrinsic apoptosis involving the FAK survival signal transduction pathway.


Assuntos
Apoptose/efeitos dos fármacos , Mama/enzimologia , Mama/patologia , Glicoproteínas de Membrana/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Inibidor Tecidual de Metaloproteinase-1/fisiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose , Mama/citologia , Mama/efeitos dos fármacos , Caspase 3 , Inibidores de Caspase , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Interações Medicamentosas , Ativação Enzimática , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Glicoproteínas de Membrana/farmacologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF , Inibidor Tecidual de Metaloproteinase-1/biossíntese , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
11.
J Cell Physiol ; 203(3): 501-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15729735

RESUMO

We studied whether nerve growth factor (NGF) can affect the membrane potential and conductance of PC12 cells. We demonstrate that NGF depolarizes the membrane of PC12 cells within a minute and by using transfected NIH 3T3-Trk and -p75 cells we show that both the high affinity NGF receptor p140(trk) and the low affinity NGF receptor or p75(NGF) may be involved in the depolarization. Tyrosine kinase inhibitor, K252a, partially inhibited the depolarization, but two agents affecting intracellular calcium movements, Xestospongin C (XeC) and thapsigargin, did not. The early depolarization was eliminated in Na+ free solutions and under this condition, a 'prolonged' (> 2 min) hyperpolarization was observed in PC12 cells in response to NGF. This hyperpolarization was also induced in PC12 cells by epidermal growth factor (EGF). Voltage clamp experiments showed that NGF produced a late (> 2 min) increase in membrane conductance. The Ca2+-dependent BK-type channel blocker, iberiotoxin, and the general Ca2+-dependent K+ channel blocker, TEA, attenuated or eliminated the hyperpolarization produced by NGF in sodium free media. Under pretreatment with the non-selective cation channel blockers La3+ and Gd3+, NGF hyperpolarized the membrane of PC12 cells. These results suggest that three different currents are implicated in rapid NGF-induced membrane voltage changes, namely an acutely activated Na+ current, Ca2+-dependent potassium currents and non-selective cation currents.


Assuntos
Cátions/metabolismo , Membrana Celular/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Proteínas de Transporte de Cátions/efeitos dos fármacos , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Canais Iônicos/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Células NIH 3T3 , Neurônios/metabolismo , Células PC12 , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Canais de Potássio Cálcio-Ativados/metabolismo , Ratos , Receptor de Fator de Crescimento Neural , Receptor trkA/efeitos dos fármacos , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/efeitos dos fármacos , Receptores de Fator de Crescimento Neural/metabolismo , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/metabolismo
12.
J Cell Biol ; 163(2): 385-95, 2003 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-14581459

RESUMO

Internalization of the neurotrophin-Trk receptor complex is critical for many aspects of neurotrophin functions. The mechanisms governing the internalization process are unknown. Here, we report that neuronal activity facilitates the internalization of the receptor for brain-derived neurotrophic factor, TrkB, by potentiating its tyrosine kinase activity. Using three independent approaches, we show that electric stimulation of hippocampal neurons markedly enhances TrkB internalization. Electric stimulation also potentiates TrkB tyrosine kinase activity. The activity-dependent enhancement of TrkB internalization and its tyrosine kinase requires Ca2+ influx through N-methyl-d-aspartate receptors and Ca2+ channels. Inhibition of internalization had no effect on TrkB kinase, but inhibition of TrkB kinase prevents the modulation of TrkB internalization, suggesting a critical role of the tyrosine kinase in the activity-dependent receptor endocytosis. These results demonstrate an activity- and Ca2+-dependent modulation of TrkB tyrosine kinase and its internalization, and they provide new insights into the cell biology of tyrosine kinase receptors.


Assuntos
Cálcio/metabolismo , Neurônios/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor trkB/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Biotinilação , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Carbazóis/farmacologia , Células Cultivadas , Meios de Cultura Livres de Soro , Estimulação Elétrica , Hipocampo/citologia , Alcaloides Indólicos , Radioisótopos do Iodo , Camundongos , Camundongos Knockout , Neurônios/química , Neurônios/citologia , Fosforilação , Ensaio Radioligante , Receptor trkB/efeitos dos fármacos
13.
J Biol Chem ; 278(49): 49582-8, 2003 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-14506245

RESUMO

Platelet-derived growth factor (PDGF) is a potent mitogen for mesenchymal cells. PDGF AA functions as a "competent factor" that stimulates cell cycle entry but requires additional (progression) factors in serum to transit the cell cycle beyond the G1/S checkpoint. Unlike PDGF AA, PDGF B-chain (c-sis) homodimer (PDGF BB) and its viral counterpart v-sis can serve as both competent and progression factors. PDGF BB activates alpha- and beta-receptor subunits (alpha-PDGFR and beta-PDGFR) and induces phenotypic transformation in NIH 3T3 cells, whereas PDGF AA activates alpha-PDGFR only and fails to induce transformation. We showed previously that alpha-PDGFR antagonizes beta-PDGFR-mediated transformation through activation of stress-activated protein kinase-1/c-Jun NH2-terminal kinase-1, whereas both alpha-PDGFR and beta-PDGFR induce mitogenic signals. These studies revealed a striking feature of PDGF signaling; the specificity and the strength of the PDGF growth signal is modulated by alpha-PDGFR-mediated simultaneous activation of growth stimulatory and inhibitory signals, whereas beta-PDGFR mainly induces a growth-promoting signal. Here we demonstrate that PDGF BB activation of beta-PDGFR alone results in more efficient cell cycle transition from G1 to S phase than PDGF BB activation of both alpha-PDGFR and beta-PDGFR. PDGF AA activation of alpha-PDGFR or PDGF BB activation of both alpha- and beta-PDGFRs up-regulates expression of p21WAF1/CIP1, an inhibitor of cell cycle-dependent kinases and a downstream mediator of the tumor suppressor gene product p53. However, beta-PDGFR activation alone fails to induce p21WAF1/CIP1 expression. We also demonstrate that alpha-PDGFR-activated JNK-1 is a critical signaling component for PDGF induction of p21WAF1/CIP1 promoter activity. The ability of PDGF/JNK-1 to induce p21WAF1/CIP1 promoter activity is independent of p53, although the overall p21WAF1/CIP1 promoter activities are greatly reduced in the absence of p53. These results provide a molecular basis for differential regulation of the cell cycle and transformation by alpha- and beta-PDGFRs.


Assuntos
Ciclinas/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Crescimento Derivado de Plaquetas/fisiologia , Regiões Promotoras Genéticas , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Sequência de Bases , Western Blotting , Inibidor de Quinase Dependente de Ciclina p21 , Primers do DNA , Ativação Enzimática , Camundongos , Proteína Quinase 8 Ativada por Mitógeno , Células NIH 3T3 , Transdução de Sinais
14.
J Biol Chem ; 278(41): 40364-72, 2003 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-12904305

RESUMO

Tissue inhibitor of metalloproteinase (TIMP-1) is a natural protease inhibitor of matrix metalloproteinases (MMPs). Recent studies revealed a novel function of TIMP-1 as a potent inhibitor of apoptosis in mammalian cells. However, the mechanisms by which TIMP-1 exerts its anti-apoptotic effect are not understood. Here we show that TIMP-1 activates cell survival signaling pathways involving focal adhesion kinase, phosphatidylinositol 3-kinase, and ERKs in human breast epithelial cells to TIMP-1. TIMP-1-activated cell survival signaling down-regulates caspase-mediated classical apoptotic pathways induced by a variety of stimuli including anoikis, staurosporine exposure, and growth factor withdrawal. Consistently, down-regulation of TIMP-1 expression greatly enhances apoptotic cell death. In a previous study, substitution of the second amino acid residue threonine for glycine in TIMP-1, which confers selective MMP inhibition, was shown to obliterate its anti-apoptotic activity in activated hepatic stellate cells suggesting that the anti-apoptotic activity of TIMP-1 is dependent on MMP inhibition. Here we show that the same mutant inhibits apoptosis of human breast epithelial cells, suggesting different mechanisms of TIMP-1 regulation of apoptosis depending on cell types. Neither TIMP-2 nor a synthetic MMP inhibitor protects breast epithelial cells from intrinsic apoptotic cell death. Furthermore, TIMP-1 enhances cell survival in the presence of the synthetic MMP inhibitor. Taken together, the present study unveils some of the mechanisms mediating the anti-apoptotic effects of TIMP-1 in human breast epithelial cells through TIMP-1-specific signal transduction pathways.


Assuntos
Apoptose/fisiologia , Mama/citologia , Mama/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Sequência de Bases , Sobrevivência Celular , DNA Complementar/genética , Regulação para Baixo , Ativação Enzimática , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Inibidores de Metaloproteinases de Matriz , Inibidor Tecidual de Metaloproteinase-1/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA