Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38415967

RESUMO

An integrated and projected-based laboratory course was described, integrating interconnected knowledge points and biochemistry and molecular biology techniques on a research project-based system. The program, which served as an essential extension of theoretical courses to practice, was conducted with a sophomore of basic medical science who had completed the course in medical biochemistry and molecular biology. This course engaged students in learning "genetic manipulation" and "recombinant DNA technology" to understand the target gene's role in disease mechanics, thus altering evaluation and treatment for clinical disease. Students could master applied and advanced techniques, such as cell culture, transfection, inducing exogenous fusion protein expression, purifying protein and its concentration assay, quantitative polymerase chain reaction, and western bot analysis. This laboratory exercise links laboratory practices with the methods of current basic research. Students need to complete the experimental design report and laboratory report, which could be advantageous for improving their ability to write lab summaries and scientific papers in the future. The reliability and validity analyses were conducted on the questionnaire, and we examined students' satisfaction with the course and their gains from the course. The student feedback was generally positive, indicating that the exercise helped consolidate theoretical knowledge, increase scientific research enthusiasm, and provide a powerful tool to be a better person and make informed decisions.

2.
Opt Lett ; 48(23): 6160-6163, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039216

RESUMO

The harmonic mode-locking (HML) "invisible" pulsation (IP) is reported, here, in a bidirectional passively mode-locked fiber laser (BPMLFL). With the help of dispersive Fourier transform (DFT) technology, it is found that due to the alike nonlinear effects experienced by two pulse trains in HML, their evolution is consistent during the IP. Further, as the increase of pump power, period-doubling bifurcations (PDBs) can be observed based on the IP phenomenon in the HML regime, the PDB path experienced by the HML from steady to chaotic is statistically obtained. Finally, the IP and PDB in the bidirectional laser are reproduced and studied through numerical simulations. The effect of IP on the coherence of solitons is further analyzed. We believe our research results will provide new insights into the study of soliton dynamics in fiber lasers.

3.
Transl Cancer Res ; 12(11): 3222, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38130303

RESUMO

[This retracts the article DOI: 10.21037/tcr.2020.04.26.].

4.
Opt Express ; 31(19): 30470-30477, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710587

RESUMO

A multi-order broadband mode converter in a ring-core fiber (RCF) using a multi-pitch chirped long-period fiber grating (LPFG), where multiple pitches were introduced in each chirp to further increase the bandwidth, is proposed and demonstrated. The grating parameters were optimized both theoretically and experimentally to achieve broadband mode generation of OAM ± 2 and OAM ± 3 modes by increasing the number of chirps and pitches. The mode conversion efficiency is higher than 90% with a broadband of 57 nm from 1456 nm to 1513 nm and 51 nm from 1573 nm to 1624 nm, corresponding to the second-order OAM mode and third-order OAM mode, respectively. Additionally, the insertion loss is less than 0.8 dB, and the purity is over 90%. The demonstrated mode converter has successfully achieved simultaneous generation of multi-order broadband OAM modes in a RCF for the first time, which has promising potential for application in OAM mode-division multiplexing systems.

5.
Opt Express ; 31(15): 25128-25142, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475325

RESUMO

The lack of research on photonic lanterns multiplexing multi-order orbital angular momentum (OAM) modes hinders the development of OAM space division multiplexing systems. In this paper, an annular multicore photonic lantern (AMCPL) for multiplexing several OAM mode groups is proposed and demonstrated. Comprehensive simulations are carried out to investigate the effect of the multicore arrangements on the crosstalk (XT) between different OAM mode groups. Further optimization provides an inverted multicore arrangement of the OAM AMCPL with balanced XT between high-order OAM mode groups with topological charges |l| = 2 to 5 for the first time, of which the highest XT between target mode groups does not exceed -27.20 dB at wavelengths from 1300 nm to 1600 nm, and mode conversion efficiencies of all target mode groups exceed 99.5%. Furthermore, a quantum interpretation is given to reveal the characteristics of the evolution of the supermodes along the taper of the OAM AMCPL, which has not been reported.

6.
Opt Express ; 31(14): 22776-22789, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475381

RESUMO

Soliton molecule has the properties that similar to those of matter molecule, which brings great research value. The rich dynamics of soliton molecules depend on the complex interactions between pulses. As one of the important factors, gain dynamics has multi-dimensional effects on the interactions of soliton molecules. We here study the interaction process of soliton molecules under gain perturbation, and find the oscillation and collision behaviors of pulses within soliton molecules induced by gain perturbation, as well as the pulses recombination through interactions between soliton molecules. We believe that the energy change in the cavity and the energy transfer based on the continuous wave component play an important role in the evolution process of the dissociation of soliton molecules into three-pulses bunch and single pulse. These findings reveal the effects of gain on the motion of soliton molecules and provide a basis for exploring the control dynamics of soliton molecules.

7.
Opt Express ; 31(12): 19036-19047, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381329

RESUMO

A novel optical soliton dynamics phenomenon, called "invisible" pulsation, has gradually attracted extensive interest in recent years, which can only be identified effectively with the help of real-time spectroscopy technique, i.e., dispersive Fourier transformation (DFT). In this paper, based on a new bidirectional passively mode-locked fiber laser (MLFL), the "invisible" pulsation dynamics of soliton molecules (SMs) is systematically studied. It is indicated that the spectral center intensity, pulse peak power and relative phase of SMs are periodically changed during the "invisible" pulsation, while the temporal separation inside the SMs is constant. The degree of spectral distortion is positively correlated with the pulse peak power, which verifies that self-phase modulation (SPM) is the inducement of spectral distortion. Finally, the universality of the SMs "invisible" pulsation is further experimentally verified. We believe our work is not only conducive to the development of compact and reliable bidirectional ultrafast light sources, but also of great significance to enrich the study of nonlinear dynamics.

8.
Opt Express ; 31(11): 18050-18062, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381523

RESUMO

Trapped in the stringent adiabatic transmission condition of high-order modes, low-loss fused biconical taper mode selective coupler (FBT-MSC) has long been challenging to achieve. We identify the adiabatic predicament of high-order modes to stem from the rapid variation of the eigenmode field diameter, which is caused by the large core-cladding diameter difference of few-mode fiber (FMF). We demonstrate that introducing a positive-index inner cladding in FMF is an effective approach to address this predicament. The optimized FMF can be used as dedicated fiber for FBT-MSC fabrication, and exhibits good compatibility with the original fibers, which is critical for the wide adoption of MSC. As an example, we add inner cladding in a step-index FMF to achieve excellent adiabatic high-order mode characteristics. The optimized fiber is used to manufacture ultra-low-loss 5-LP MSC. The insertion losses of the fabricated LP01, LP11, LP21, LP02 and LP12 MSCs are 0.13 dB at 1541 nm, 0.02 dB at 1553 nm, 0.08 dB at 1538 nm, 0.20 dB at 1523 nm, and 0.15 dB at 1539 nm, respectively, with smoothly varying insertion loss across the wavelength domain. Additional loss is less than 0.20 dB from 1465.00 nm to 1639.31 nm, and the 90% conversion bandwidth exceeds 68.03 nm, 166.68 nm, 174.31 nm, 132.83 nm, and 84.17 nm, respectively. MSCs are manufactured using commercial equipment and a standardized process that takes just 15 minutes, making them a potential candidate for low-cost batch manufacturing in a space division multiplexing system.

9.
Nanoscale ; 15(16): 7566-7576, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37039004

RESUMO

As a Dirac material, an allotrope of graphene, namely γ-graphyne (γ-GY), is proved to have excellent nonlinear optical properties. Unfortunately, the saturable absorption properties and ultrafast photonics applications of γ-GY at the 1.5 µm band, which play vital roles in optical communication, have not been reported so far. Herein, γ-GY nanosheets (NSs) are prepared by an improved mechanochemical method, and a saturable absorber (SA) is fabricated by a laser-induced deposition method. The modulation depth (MD) and saturable fluence at 1.5 µm are found to be 5.40% and 23.46 µJ cm-2, respectively. Consequently, by inserting the as-prepared SA into an Er3+-doped fiber laser (EDFL), Q-switching and mode-locking operation with high stability are realized. Also, the mode-locking pulses are verified to be polarization-locked vector solitons (PLVSs) based on further study. With increasing pump power, the phase difference between the two orthogonal components increases, leading to the evolution of state of polarization (SOP). Additionally, the degrees of polarization (DOPs) are measured and all reach more than 97%, meaning high polarization stability. Therefore, this work not only broadens the application scope of γ-GY in ultrafast photonics, but also provides an important foundation for the study of soliton dynamics.

10.
Opt Express ; 31(5): 7134-7143, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859850

RESUMO

Spatiotemporal mode-locked (STML) fiber lasers have become an excellent platform in nonlinear optics research due to the rich nonlinear evolution process. In order to overcome modal walk-off and realize phase locking of different transverse modes, it is usually crucial to reduce the modal group delay difference in the cavity. In this paper, we use long-period fiber grating (LPFG) to compensate the large modal dispersion and differential modal gain in the cavity, realizing the spatiotemporal mode-locking in step-index fibers cavity. The LPFG inscribed in few-mode fiber could induce strong mode coupling, which has wide operation bandwidth based on dual-resonance coupling mechanism. By using dispersive Fourier transform involved intermodal interference, we show that there is a stable phase difference between the transverse modes constituting the spatiotemporal soliton. These results would be beneficial for the study of spatiotemporal mode-locked fiber lasers.

11.
Sensors (Basel) ; 23(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904810

RESUMO

Optical technology is one of the key technologies that have been widely used for communication, computing and sensing [...].

12.
Opt Express ; 31(4): 5963-5972, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823865

RESUMO

Pulsating soliton (PS) as a local structure of nonlinear systems has induced substantial interest in nonlinear photonics and ultrafast lasers. However, the interaction mechanism between PSs has not been fully studied. Here, the vital role of the asymmetric dispersive wave (DW) in PSs interaction is investigated for the first time. Based on the complex Ginzburg-Landau equation (CQGLE), we find that the asynchronous pulsating soliton molecule (PSM) composed of strong PSs and weak PSs will produce frequency shift due to the asymmetric DW, and the state of the PS can be transferred through the DW during the collision between PSs and PSM. Moreover, we firstly characterize the PS with asymmetric DW in experiment, and observe the drift of PSM, which agree with our simulation that the asymmetric DW can cause the frequency shift of PSMs. Our results provide new insights into the multi soliton interaction of nonlinear systems.

13.
Appl Opt ; 62(2): 470-474, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630248

RESUMO

We experimentally investigate high-order mode (HOM) generation at a wavelength of 1.5 µm in an all-fiber erbium-doped laser based on a long-period fiber grating (LPFG). The CW laser emission is achieved when the pump power is above the threshold of 10 mW. An LPFG with a 15 dB bandwidth of 147.76 nm from 1502.76 nm to 1650.52 nm is used as a mode converter inside the cavity. The generation of the broadband L P 11 mode is ultimately obtained. By using a few-mode output coupler, we can obtain the intracavity conversion of the linear polarization mode. Single-, dual-, triple-, and quadruple-wavelength operations can be achieved by changing the polarization state of the polarization controllers in the cavity. The tunable range of the output wavelengths is up to ∼23.20n m. The output power and slope efficiency of the HOMs are presented and discussed. We believe our work might benefit the investigation of HOM fiber lasers, and might be further applied to the intracavity conversion of the linear polarization mode or orbital angular momentum beams.

14.
Opt Express ; 30(26): 47048-47058, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558642

RESUMO

All-fiber mode converters for generating orbital angular momentum (OAM) beams have many applications in optical communications, optical sensing and lasers. Currently, it is a great challenge to use a long-period fiber grating (LPFG) to broadband excite high-order OAM modes above the second-order. Here, we demonstrate a preset-twist LPFG fabrication method, which introduces asymmetry in the refractive index modulation area, for efficient generation of third-order modes. Through optimization, the generation of third-order OAM modes with 99.55% conversion efficiency, 0.81 dB insertion loss, and over 99% purity is achieved with only 40 pitch number. In addition, a multi-period preset-twist LPFG is proposed and demonstrated to achieve the excitation of broadband third-order mode with conversion efficiency of more than 99%, insertion loss of less than 1 dB, and mode purity of more than 90%. The 15 dB bandwidth (96.8% conversion efficiency) of the LPFG is 109 nm in the wavelength range from 1475 nm to 1584 nm, and the 20 dB bandwidth (99% conversion efficiency) of the LPFG is 92 nm from 1488 nm to 1580 nm. To the best of our knowledge, this is the first time to generate efficient and broadband third-order mode using a long-period fiber grating.

15.
Opt Express ; 30(15): 26341-26347, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236828

RESUMO

High order modes in a six-mode fiber are separately observed and characterized using an Optical Frequency Domain Reflectometry (OFDR) method. Due to the difference in group refractive index between fundamental mode and the high order modes, Fresnel reflection peaks for each mode can be separated in beat frequency domain with their corresponding time delay. In the experiment, the fundamental mode and high order modes are excited in turn and observed at a 6.6 m six-mode fiber end, which agree with their beat frequency difference in theoretical simulation. The demonstration provides a flexible and feasible method for mode identification and characterization of all kinds of fibers.

16.
Opt Express ; 30(20): 35457-35466, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258496

RESUMO

A well designed ring-core fiber can theoretically support numerous orbital angular momentum (OAM) modes with low crosstalk for space-division-multiplexing (SDM) data transmission, which is considered as a promising solution for overcoming the capacity crunch in optical communication network. However, the accumulated chromatic dispersion in OAM-fiber could limit the data speed and transmission distance of communication systems. A potential solution is to insert a dispersion compensation ring-core fiber with opposite-sign of dispersion in the transmission fiber along the fiber link. In this work, we propose a triple ring-core fiber with broadband negative dispersion. A highest negative dispersion of -24.47 ps/(nm·km) at 1550 nm and an average dispersion slope in the C band from -0.182 ps/(nm2·km) to 0.065 ps/(nm2·km) can be achieved to compensate multi-order dispersion. The effects of Ge-doping concentration fluctuation in the high-index ring core and fabrication errors on fiber geometric structures are also investigated. Furthermore, the effective mode area decreases as the widths of high-index rings increase due to the enhanced confinement ability. The designed triple ring-core fiber could offer potential for compensating OAM fiber links with positive dispersions.

17.
Opt Express ; 30(11): 20076-20087, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221766

RESUMO

Spatiotemporal mode-locked lasers have attracted extensive attention of researchers due to the complex nonlinear evolution process. Compared to single-mode mode-locked lasers, intermodal interactions greatly affect the pulses evolution in spatiotemporal mode-locked lasers. Here, we experimentally investigate the transition process between noise-like pulses and Q-switching pulses in few-mode mode-locked laser by rotating the plates, where a transition state is greatly broadened in the time domain. By means of spectral filtering, we verify that the process is the reconstruction of Q-switching between different modes to noise-like pulses. Furthermore, during the evolution of noise-like pulses, soliton collisions are detected using dispersive Fourier transform technology. Our research contributes to revealing the transient evolution process in few-mode mode-locked lasers, and enriches the study of nonlinear process.

18.
Sensors (Basel) ; 22(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36081158

RESUMO

In this paper, we design a silica-cladded Germania-doped ring-core fiber (RCF) that supports orbital angular momentum (OAM) modes. By optimizing the fiber structure parameters, the RCF possesses a near-zero flat dispersion with a total variation of <±30 ps/nm/km over 1770 nm bandwidth from 1040 to 2810 nm for the OAM1,1 mode. A beyond-two-octave supercontinuum spectrum of the OAM1,1 mode is generated numerically by launching a 40 fs 120 kW pulse train centered at 1400 nm into a 12 cm long designed 50 mol% Ge-doped fiber, which covers 2130 nm bandwidth from 630 nm to 2760 nm at −40 dB of power level. This design can serve as an efficient way to extend the spectral coverage of beams carrying OAM modes for various applications.

19.
Opt Express ; 30(9): 14218-14231, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473170

RESUMO

Dissipative systems form various self-organized states owing to the abundant attractor structures. The study of the response of different self-organized states under collision perturbation is of great significance for understanding the dissipative nonlinear systems. The collision dynamics of single soliton and soliton molecules can not only assist the stability analysis of attractors, but also reveal the rich physical connotations of soliton interactions. Here, for the first time, the collision processes of single soliton and soliton molecules in different excited states are detected using the dispersive Fourier transform technology. The collision processes include the disintegration and rebuilding of soliton molecules as well as chaotic oscillating evolution, accompanied by the emergence of transition states such as triple binding state, soliton fusion and acceleration. According to whether the soliton molecule can return to its initial excited state, the collisions are classified as elastic and inelastic. The different interaction strength between solitons is an important condition for rebuilding stable soliton molecules. Numerical simulations show that the gain dynamics are the main physical origin of collisions. Our research will stimulate in-depth research on the interaction of self-organized states in nonlinear systems such as chemical molecules, and have potential applications in optical logic gates.

20.
Opt Lett ; 47(9): 2206-2209, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486761

RESUMO

We propose and design a 19-ring-air-core fiber that can support about 3000 orbital angular momentum (OAM) modes (156 modes in each ring) with <-80 dB inter-ring cross talk across the entire C and L bands after 100-km fiber propagation. Moreover, the eigenmodes are all separated from their adjacent modes by effective index differences >2.67 × 10-4 and mode groups by > 1.90 × 10-2, which can guarantee the stable transmission of OAM modes. This designed fiber is a potential candidate for applications in spatial division multiplexing (SDM) of optical channels to improve the capacity of next-generation high-speed optical communication systems, especially in short-distance applications. In this Letter, we also show the relationship between supported OAM mode numbers, total cross talk, and effective refractive index of intra-ring modes during the optimization of fiber through numerical simulations. It can provide a related reference for the future design of multi-ring-core fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA