Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832692

RESUMO

Cold heavy oil production with sand (CHOPS) is an extraction process for heavy oil in Canada, with the potential to lead to higher CH4 venting than conventional oil sites, that have not been adequately characterized. In order to quantify CH4 emissions from CHOPS activities, a focused aerial measurement campaign was conducted in the Canadian provinces of Alberta and Saskatchewan in June 2018. Total CH4 emissions from each of 10 clusters of CHOPS wells (containing 22-167 well sites per cluster) were derived using a mass balance computation algorithm that uses in situ wind data measurement on board aircraft. Results show that there is no statistically significant difference in CH4 emissions from CHOPS wells between the two provinces. Cluster-aggregated emission factors (EF) were determined using correspondingly aggregated production volumes. The average CH4 EF was 70.4 ± 36.9 kg/m3 produced oil for the Alberta wells and 55.1 ± 13.7 kg/m3 produced oil for the Saskatchewan wells. Using these EF and heavy oil production volumes reported to provincial regulators, the annual CH4 emissions from CHOPS were estimated to be 121% larger than CHOPS emissions extracted from Canada's National Inventory Report (NIR) for Saskatchewan. The EF were found to be positively correlated with the percentage of nonpiped production volumes in each cluster, indicating higher emissions for nonpiped wells while suggesting an avenue for methane emission reductions. A comparison with recent measurements indicates relatively limited effectiveness of regulations for Saskatchewan compared to those in Alberta. The results of this study indicate the substantial contribution of CHOPS operations to the underreporting observed in the NIR and provide measurement-based EF that can be used to develop improved emissions inventories for this sector and mitigate CH4 emissions from CHOPS operations.

2.
Microbiol Spectr ; 11(4): e0521022, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37289056

RESUMO

Listeria monocytogenes is an important pathogen which easily contaminates food and causes fatal systemic infections in human. Bacteriocins have received much attention regarding their natural methods of controlling health-related pathogens. Here, we investigated and characterized a novel two-component bacteriocin named acidicin P from Pediococcus acidilactici LAC5-17. Acidicin P showed obvious antimicrobial activity to L. monocytogenes. Through a sequence similarity network analysis for two-component bacteriocin precursors mined in the RefSeq database, acidicin P was observed to belong to an unusual group of two-component bacteriocins. Acidicin P contains two peptides designated Adpα and Adpß which are assessed to interact with each other and form a helical dimer structure which can be inserted into the lipid bilayer of target cell membrane. We demonstrate that A5, N7, and G9 in the A5xxxG9 motif of Adpα and S16, R19, and G20 in the S16xxxG20 motif of Adpß played crucial roles in stabilizing the helix-helix interaction of Adpα and Adpß and were essential for the antilisterial activity of acidicin P by site-directed mutagenesis. A positive residue, R14, in Adpα and a negative residue, D12, in Adpß are also important for acidicin P to fight against L. monocytogenes. These key residues are supposed to form hydrogen bonding, which is crucial for the interaction of Adpα and Adpß. Furthermore, acidicin P induces severe permeabilization and depolarization of the cytoplasmic membrane and causes dramatic changes in L. monocytogenes cell morphology and ultrastructure. Acidicin P has the potential to be applied to inhibit L. monocytogenes efficiently both in the food industry and medical treatments. IMPORTANCE L. monocytogenes can cause widespread food contamination and severe human listeriosis, which amount to a large proportion of the public health and economic burdens. Today, L. monocytogenes is usually treated with chemical compounds in the food industry or antibiotics for human listeriosis. Natural and safe antilisterial agents are urgently required. Bacteriocins are natural antimicrobial peptides that have comparable narrow antimicrobial spectra and are attractive potentials for precision therapy for pathogen infection. In this work, we discover a novel two-component bacteriocin designated acidicin P, which shows obvious antilisterial activity. We also identify the key residues in both peptides of acidicin P and demonstrate that acidicin P is inserted into the target cell membrane and disrupts the cell envelop to inhibit the growth of L. monocytogenes. We believe that acidicin P is a promising lead for further development as an antilisterial drug.


Assuntos
Bacteriocinas , Listeria monocytogenes , Listeriose , Humanos , Bacteriocinas/farmacologia , Antibacterianos/farmacologia , Listeriose/tratamento farmacológico , Membrana Celular
3.
Sci Total Environ ; 880: 163232, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023817

RESUMO

Forest fire research over the last several decades has improved the understanding of fire emissions and impacts. Nevertheless, the evolution of forest fire plumes remains poorly quantified and understood. Here, a Lagrangian chemical transport model, the Forward Atmospheric Stochastic Transport model coupled with the Master Chemical Mechanism (FAST-MCM), has been developed to simulate the transport and chemical transformations of plumes from a boreal forest fire over several hours since their emission. The model results for NOx (NO and NO2), O3, HONO, HNO3, pNO3 and 70 VOC species are compared with airborne in-situ measurements within plume centers and their surrounding portions during the transport. Comparisons between simulation results and measurements show that the FAST-MCM model can properly reproduce the physical and chemical evolution of forest fire plumes. The results indicate that the model can be an important tool used to aid the understanding of the downwind impacts of forest fire plumes.

4.
Crit Rev Microbiol ; 49(4): 515-527, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35713699

RESUMO

The gut microbes interact with each other as well as host, influencing human health and some diseases. Many gut commensals and food originated bacteria produce bacteriocins which can inhibit pathogens and modulate gut microbiota. Bacteriocins have comparable narrow antimicrobial spectrum and are attractive potentials for precision therapy of gut disorders. In this review, the bacteriocins from food and gut microbiomes and their involvement in the interaction between producers and gut ecosystem, along with their characteristics, types, biosynthesis, and functions are described and discussed. Bacteriocins are produced by many intestinal commensals and food microbes among which lactic acid bacteria (many are probiotics) has been paid more attention. Bacteriocin production has been generally regarded as a probiotic trait. They give a competitive advantage to bacteria, enabling their colonization in human gut, and mediating the interaction between the producers and host ecosystem. They fight against unwanted bacteria and pathogens without significant impact on the composition of commensal microbiota. Bacteriocins assist the producers to survive and colonize in the gut microbial populations. There is a great need to evaluate and utilize the potential of bacteriocins for improved therapeutic implications for intestinal health.


Assuntos
Bacteriocinas , Microbioma Gastrointestinal , Microbiota , Probióticos , Humanos , Bacteriocinas/farmacologia , Interações entre Hospedeiro e Microrganismos , Bactérias/genética
5.
Bioresour Technol ; 367: 128264, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343778

RESUMO

Discarding Lonicera japonica Thunb. (LJT) residues containing many active metabolites create tremendous waste. This study aimed to effectively use LJT residues by anaerobic fermentation. Fermentation significantly decreased the pH values and reduced the abundance of undesirable bacteria (potential pathogenic and biofilm-forming) while increasing Lactobacillus abundance. Compound additive use further improved fermentation quality (significantly increased the lactic acid (LA) content and decreased the pH values and ammonia nitrogen (a-N) content) and nutrient quality (significantly decreased the acid detergent fiber (ADF) content and increased the water-soluble carbohydrate (WSC) content) and optimized the microbial community (increased the Lactobacillus abundance). Fermentation also altered the flavonoids, alkaloids and phenols contents in the residues with minor effects on the functional metabolites amounts. The LJT residues metabolic profile was mainly attributed to its epiphytic bacteria, with a small contribution from the compound additive. Thus, compound additives may improve anaerobic LJT residue fermentation without functionally impairing the metabolites.


Assuntos
Lonicera , Lonicera/química , Lonicera/metabolismo , Fermentação , Anaerobiose , Metaboloma , Lactobacillus , Bactérias , Silagem/microbiologia
6.
Front Microbiol ; 13: 1059551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532470

RESUMO

Ensiling legume with cereal is an effective method to ensure the energy rich-feed, but no information is available on the microbial fermentation mechanism of intercropped Lablab purpureus (Lablab) and sweet sorghum in the saline-alkaline region. Therefore, the present study investigated the silage quality and microbial community of intercropped Lablab and sweet sorghum silages grown in the saline-alkaline region with or without inoculation of Lactobacillus plantarum (LP). The experimental treatments were prepared according to the Lablab and sweet sorghum planting patterns: Lablab and sweet sorghum sowing seed ratios were 1:1 (L), 5:1 (M), and 9:1 (H). After harvesting, each mixture was treated with LP or sterilized water (CK), followed by 60 days of fermentation. Results showed that both LP inoculation and intercropping significantly raised the lactic acid (LA) content and decreased the pH value, acetic acid (AA), and ammonia-N in intercropped silages. The LP addition and intercropping also improved the relative feed value by reducing structural carbohydrates. Moreover, LP silages had a greater relative abundance of Lactobacillus than CK silages, and its relative abundance increased with an increased seed-sowing ratio of Lablab in intercropping. LP was the prevalent species in LP silages compared to CK silages, and its relative abundance also increased with an increased seed-sowing ratio of Lablab in intercropping. The genus Lactobacillus was negatively correlated with ammonia-N (R = -0.6, p = 0.02) and AA (R = -0.7, p < 0.01) and positively correlated with LA (R = 0.7, p < 0.01) and crude protein (R = 0.6, p = 0.04). Overall, the intercropped seeding ratios of Lablab and sweet sorghum of ≥ 5:1 with LP inoculation resulted in better fermentation quality and preservation of nutritional components providing theoretical support and guidance for future intercropped protein-rich silage production in the saline-alkaline region.

7.
Microbiol Spectr ; 10(5): e0248322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190422

RESUMO

Protein-rich Sesbania cannabina and sugar-rich sweet sorghum [Sorghum dochna (Forssk.) Snowden] are characterized by their higher tolerance to saline-alkaline stresses and simultaneous harvests. They could be utilized for coensiling because of their nutritional advantages, which are crucial to compensate protein-rich forage in saline-alkaline regions. The current study investigated the fermentation quality, microbial community succession, and predicted microbial functions of Sesbania cannabina and sweet sorghum in mixed silage during the fermentation process. Before ensiling, the mixtures were treated with compound lactic acid bacteria (LAB) inoculants followed by 3, 7, 14, 30, and 60 days of fermentation. The results revealed that the inoculated homofermentative species Lactobacillus plantarum and Lactobacillus farciminis dominated the early phase of fermentation, and these shifted to the heterofermentative species Lactobacillus buchneri and Lactobacillus hilgardii in the later phase of fermentation. As a result, the pH of the mixed silages decreased significantly, accompanied by the growth of acid-producing microorganisms, especially L. buchneri and L. hilgardii, which actively influenced the bacterial community structure and metabolic pathways. Moreover, the contents of lactic acid, acetic acid, 1,2-propanediol, and water-soluble carbohydrates increased, while the contents of ammonia-N and fiber were decreased, with increasing ratios of sweet sorghum in the mixed silage. Overall, coensiling Sesbania cannabina with >30% sweet sorghum is feasible to attain high-quality silage, and the relay action between homofermentative and heterofermentative LAB species could enhance fermentation quality and conserve the nutrients of the mixed silage. IMPORTANCE The coensiling of Sesbania cannabina and sweet sorghum is of great practical importance in order to alleviate the protein-rich forage deficiency in saline-alkaline regions. Furthermore, understanding the microbial community's dynamic changes, interactions, and metabolic pathways during ensiling will provide the theoretical basis to effectively regulate silage fermentation. Here, we established that coensiling Sesbania cannabina with >30% sweet sorghum was effective at ensuring better fermentation quality and preservation of nutrients. Moreover, the different fermentation types of LAB strains played a relay role during the fermentation process. The homofermentative species L. plantarum and L. farciminis dominated in the early phase of fermentation, while the heterofermentative species L. buchneri and L. hilgardii dominated in the later phase of fermentation. Their relay action in Sesbania cannabina-sweet sorghum mixed silage may help to improve fermentation quality and nutrient preservation.


Assuntos
Microbiota , Sesbania , Sorghum , Silagem/análise , Silagem/microbiologia , Fermentação , Sorghum/metabolismo , Sorghum/microbiologia , Sesbania/metabolismo , Amônia , Propilenoglicol , Grão Comestível , Ácido Acético/análise , Ácido Láctico/metabolismo , Carboidratos , Açúcares , Água , Zea mays/metabolismo
8.
Front Microbiol ; 13: 851271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401441

RESUMO

Sesbania cannabina (SC) is a protein-rich roughage that thrives under moderate-severe saline-alkali (MSSA) soils with the potential to relieve the shortage of high nutritive forage. Sweet sorghum (SS) also tolerates MSSA soils and contains rich fermentable carbohydrates which could improve the fermentation quality in mixed silage. The present study investigated the silage quality, bacterial community, and metabolome in the mixed silage of SC and SS (SC-SS) with or without lactic acid bacterial (LAB) inoculants. Four ratios (10:0, 7:3, 5:5, and 3:7) of SC and SS were treated with sterile water or LAB inoculants (homofermentative Companilactobacillus farciminis and Lactiplantibacillus plantarum, and heterofermentative Lentilactobacillus buchneri and Lentilactobacillus hilgardii), which were analyzed after 60 days of ensiling. Results revealed that LAB inoculation improved the fermentation quality by increasing the lactic acid content and decreasing the ammonia nitrogen and butyric acid contents compared with the untreated group. LAB inoculation also raised the relative feed value by reducing indigestible fibers [e.g., neutral detergent fiber (NDF), acid detergent fiber, and hemicellulose]. Microbial and metabolomic analysis indicated that LAB inoculants could modify the bacterial community and metabolome of SC-SS silage. In co-ensiling samples except for SC alone silage, L. buchneri and L. hilgardii were the dominant species. Metabolites with bioactivities like anti-inflammatory, antioxidant, antimicrobial, and anti-tumor were upregulated with LAB inoculation. Furthermore, correlation analysis demonstrated that active metabolites (e.g., glycitin, glabrene, alnustone, etc.) were positively correlated with L. buchneri, while tripeptides (e.g., SPK, LLK, LPH, etc.) were positively correlated with L. hilgardii. Adequately describing the SC-SS silage by multi-omics approach might deepen our understanding of complicated biological processes underlying feature silages fermentation. Moreover, it may also contribute to screening of targeted functional strains for MSSA-tolerating forage to improve silage quality and promote livestock production.

9.
Food Res Int ; 154: 110991, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337563

RESUMO

Lanthipeptides are known antimicrobial agents having great potential for application in food preservation. Many lanthipeptide biosynthetic gene clusters (BGCs) were mined in fermented food microbiota, however, it is difficult to obtain the bioactive lanthipeptides and their producing strains. Here, we established a high-throughput strategy designated Metagenomic Mining of Isolates Population (MMIP) to efficiently excavate and obtain novel lanthipeptides, especially their potential producing strains. MMIP procedure involves gathering bacteria isolates using culturable strategy, metagenomic mining for lanthipeptides and screening their producers, and characterization of specific lanthipeptides. 928 biosynthetic gene clusters including 139 ribosomally synthesized and post-translationally modified peptides (RiPPs) gene clusters were discovered in the metagenomic data of the isolates by antiSMASH. Entianin, lactocin S, lichenicidin, and 17 novel lanthipeptides gene clusters corresponding to 29 possible producers were further found from the harvested isolates population. Entianin and a novel two-component lanthipeptide paralicin were purified from Bacillus subtilis C5B1 and Bacillus paralicheniformis BaC1-8, respectively. They showed strong inhibitory activity to food spoilage bacteria Bacillus cereus and Listeria monocytogenes, and have great potential for application in food preservation. A novel lanthipeptide polysacin was also obtained using semi-in vitro biosynthesis. MMIP affords a novel strategy for effectively excavating lanthipeptides, especially their producers from diverse environmental niches.


Assuntos
Brassica , Família Multigênica , Bactérias/genética , China , Família Multigênica/genética , Peptídeos/química , Peptídeos/genética
10.
J Dairy Sci ; 105(4): 3530-3543, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35181137

RESUMO

Nisin Z is a possible alternative for treating bovine mastitis by inhibiting mastitis-causing pathogens and having anti-inflammatory activity. However, the anti-inflammatory mechanism of nisin Z on mastitis is unknown. Our study aimed to investigate the mechanisms of nisin Z on mastitis. Our results showed that nisin Z inhibited the activation of the ERK1/2 and p38 mitogen-activated protein kinase (MAPK) signaling pathway, decreased the release of pro-inflammatory cytokines (i.e., tumor necrosis factor-α, IL-1ß, and IL-6), and increased the anti-inflammatory cytokine (IL-10) in lipopolysaccharide (LPS)-induced MCF10A cells. After intraperitoneal injection, nisin Z significantly decreased inflammatory cell infiltration in the mammary gland, as well as decreased myeloperoxidase and pro-inflammatory cytokines in serum and mammary gland. Western blot analysis revealed that nisin Z also dramatically suppressed the activation of the ERK1/2 and p38 MAPK signaling pathways in LPS-induced mastitis mice. We also found that nisin Z treatment could enhance the blood-milk barrier. In summary, our study demonstrated that nisin Z exerted an anti-inflammatory effect by inhibiting the ERK1/2 and p38 MAPK signaling pathway and promoting the blood-milk barrier on LPS-induced mastitis.


Assuntos
Doenças dos Bovinos , Mastite , Doenças dos Roedores , Animais , Bovinos , Feminino , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Mastite/veterinária , Camundongos , NF-kappa B/metabolismo , Nisina/análogos & derivados , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Oxid Med Cell Longev ; 2021: 5518825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936381

RESUMO

Due to the challenges of antibiotic resistance to global health, bacteriocins as antimicrobial compounds have received more and more attention. Bacteriocins are biosynthesized by various microbes and are predominantly used as food preservatives to control foodborne pathogens. Now, increasing researches have focused on bacteriocins as potential clinical antimicrobials or immune-modulating agents to fight against the global threat to human health. Given the broad- or narrow-spectrum antimicrobial activity, bacteriocins have been reported to inhibit a wide range of clinically pathogenic and multidrug-resistant bacteria, thus preventing the infections caused by these bacteria in the human body. Otherwise, some bacteriocins also show anticancer, anti-inflammatory, and immune-modulatory activities. Because of the safety and being not easy to cause drug resistance, some bacteriocins appear to have better efficacy and application prospects than existing therapeutic agents do. In this review, we highlight the potential therapeutic activities of bacteriocins and suggest opportunities for their application.


Assuntos
Antibacterianos/uso terapêutico , Bacteriocinas/uso terapêutico , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Humanos
12.
Sci Total Environ ; 750: 141302, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858287

RESUMO

Atmospheric deposition of iron (Fe) can increase marine primary productivity, consequently affect ocean biogeochemical cycles and climate change. In this study, we develop an adaptor to generate anthropogenic Fe emission inventories for China in 2012 and 2016 via anthropogenic PM2.5 emissions from Multi-resolution Emission Inventory for China (MEIC) using local source-specific mass fractions of Fe in PM2.5. Using the generated emission inventories, we simulated Fe concentrations as well as dry deposition fluxes to China marginal seas using a WRF-CMAQ model during four campaign periods. The simulated Fe concentrations are in good agreement with observations except for those in presence of severe dust-intrusion events (NMB -13% ~ -27%), indicating a reasonably good performance of the generated Fe emissions and leaving the large underestimation of Fe concentrations mainly due to nature dust emissions. Simulated Fe concentrations over China marginal seas are in the range of 62-6.5 × 102 ng m-3, providing 2.0-12.5 µg m-2 d-1 to the seas during the study periods. We also found that inputs of total Fe in PM2.5 to the seas in presence of dust-intrusion events are 3 and 13 times larger than those in presence of haze events or on less polluted days. Due to lower Fe solubility in nature mineral aerosols than in anthropogenic aerosols, dry deposition fluxes of bioavailable Fe on haze days almost double that in dust days. The total anthropogenic emissions of Fe over China in 2012 and 2016 are estimated as 5.5 × 102 Gg and 3.3 × 102 Gg, respectively. Iron and steel industry are the dominant sources of Fe, accounting for 59-63% of the total anthropogenic Fe emissions. Geotropically, stronger emissions per area were distributed in eastern China, e.g., 2.3 to 15.4 ng m-2 s-1 in eastern China versus <0.4 ng m-2 s-1 in western China.

13.
PeerJ ; 7: e7712, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608168

RESUMO

BACKGROUND: Alfalfa (Medicago sativa) is an important forage material widely used for animal feed production. Ensiling is an effective method for preserving alfalfa, but it has shown some limitations in the production of high-quality alfalfa silage due to its low water soluble carbohydrates (WSC) content and high buffering capacity. Lactic acid bacteria (LAB) and cellulase are often used as silage additives to promote the ensiling process and enhance fermentation quality. METHODS: Experiments were conducted to investigate the effects of ferulic acid esterase (FAE)-producing Lactobacillus fermentum 17SD-2 (LF) and cellulase (CE) on the fermentation quality and microbial community of alfalfa silage. After 60 days of ensiling, analysis of fermentation quality and bacterial diversity in alfalfa silages were conducted using high-performance liquid chromatography and high-throughput sequencing methods. RESULTS: Alfalfa was ensiled with additives (LF, CE, and LF+CE) or without additives for 60 days. All additives increased lactic acid and decreased pH values and ammonia-N contents compared to control. Among all treatments, the combined addition of LF and CE showed lowest pH (4.66) and ammonia-N (NH3-N, 0.57% DM) content, highest contents of lactic acid (LA, 10.51% DM), dry matter (DM, 22.54%) and crude protein (CP, 24.60% DM). Combined addition of LF and CE performed better in reducing neutral detergent fiber (NDF, 29.76% DM) and acid detergent fiber (ADF, 22.86% DM) contents than the addition of LF (33.71, 27.39% DM) or CE (32.07, 25.45% DM) alone. Moreover, the microbial analysis indicated that LF+CE treatments increased the abundance of desirable Lactobacillus and inhibited the growth of detrimental Enterobacter and Clostridia in alfalfa silage. DISCUSSION: Combined addition of FAE-producing LF and CE is more effective than treatments of LF or CE alone in improving fermentation quality and nutrition values of alfalfa silage. This is likely due to a synergistic effect of CE and FAE produced by LF on plant cell wall degradation, indicating that these additives promote each other to improve fiber degradation and silage fermentation. In conclusion, combined addition of FAE-producing LF and CE could be a feasible way to improve alfalfa silage quality.

14.
Front Microbiol ; 10: 90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804899

RESUMO

Lactobacillus plantarum is a widespread bacterial species and is commonly used as a probiotic. L. plantarum PFM105 was isolated from the rectum of a healthy sow. Here we found that L. plantarum PFM105 showed probiotic effect on weaning piglets in which intestinal inflammation and unbalanced gut microbiota happened frequently. L. plantarum PFM105 was identified to improve the growth of weaning piglet and promote the development of small intestinal villi. Antibiotics are often used in weaning piglet to prevent intestinal infection and promote the growth of animal. We found that weaning piglets feeding with L. plantarum PFM105 showed similar growth promotion but decreased diarrhea incidence compared with those feeding with antibiotics. High-throughput sequencing was used to analyze the gut microbiota in weaning piglets treated with L. plantarum PFM105 or antibiotics. The relative abundance of beneficial microbes Prevotellaceae and Bifidobacteriaceae were increased in colon of weaning piglet feeding L. plantarum PFM105, while antibiotics increased the relative abundance of bacteria associated with pathogenicity, such as Spirochaeta and Campylobacteraceae. L. plantarum PFM 105 increased indicators of intestinal health including serum levels of IgM, IL-10, and TGF-ß, and colonic levels of SCFAs. We found strong correlations between the alterations in gut microbiota composition caused by feeding antibiotics and probiotics and the measured growth and health parameters in weaning piglets. The addition of L. plantarum PFM105 could significantly increase the relative abundance of metabolic genes which may important to intestinal microbiota maturation. Altogether, we demonstrated here that L. plantarum PFM 105 could promote intestinal development through modulation of gut microbiota in weaning piglets.

15.
Sci Rep ; 8(1): 17485, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504833

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a leading cause of infectious diarrhea in children and postweaning piglets. ETEC infection results in induced pro-inflammatory responses in intestinal epithelial cells and dysbiosis of intestinal microbiota. Here, a Lactobacillus reuteri strain, HCM2, isolated from a healthy piglet showed a high survival rate in the harsh gastrointestinal tract environment and inhibited the growth of ETEC and its adherence to intestinal epithelial cells. Pre-supplementation with L. reuteri HCM2 for 14 days reduced the ETEC load in the jejunum of ETEC-infected mice and prevented the disruption of intestinal morphology by ETEC. The colonic microbiota of mice with or without HCM2 pre-supplementation were analyzed, and this analysis revealed that HCM2 could prevent dysbiosis caused by ETEC infection by stabilizing the relative abundance of dominant bacteria. These results indicate that L. reuteri HCM2 has the potential to attenuate the effect of ETEC on the colonic microbiota in infected mice.


Assuntos
Proteínas de Bactérias/fisiologia , Escherichia coli Enterotoxigênica/patogenicidade , Microbioma Gastrointestinal , Limosilactobacillus reuteri/fisiologia , Animais , Aderência Bacteriana , Mucosa Intestinal/microbiologia , Camundongos
16.
Environ Pollut ; 239: 544-553, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29684881

RESUMO

Heavy metals are concerned for its adverse effect on human health and long term burden on biogeochemical cycling in the ecosystem. In this study, a provincial-level emission inventory of 13 kinds of heavy metals including V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Sn, Sb, Ba and Pb from 10 anthropogenic sources was developed for China, based on the 2015 national emission inventory of primary particulate matters and source category-specific speciation profiles collected from 50 previous studies measured in China. Uncertainties associated with the speciation profiles were also evaluated. Our results suggested that total emissions of the 13 types of heavy metals in China are estimated at about 58000 ton for the year 2015. The iron production is the dominant source of heavy metal, contributing 42% of total emissions of heavy metals. The emissions of heavy metals vary significantly at regional scale, with largest amount of emissions concentrated in northern and eastern China. Particular, high emissions of Cr, Co, Ni, As and Sb (contributing 8%-18% of the national emissions) are found in Shandong where has large capacity of industrial production. Uncertainty analysis suggested that the implementation of province-specific source profiles in this study significantly reduced the emission uncertainties from (-89%, 289%) to (-99%, 91%), particularly for coal combustion. However, source profiles for industry sectors such as non-metallic mineral manufacturing are quite limited, resulting in a relative high uncertainty. The high-resolution emission inventories of heavy metals are essential not only for their distribution, deposition and transport studies, but for the design of policies to redress critical atmospheric environmental hazards at local and regional scales. Detailed investigation on source-specific profile in China are still needed to achieve more accurate estimations of heavy metals in the future.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Metais Pesados/análise , Material Particulado/análise , China , Carvão Mineral/análise , Humanos , Indústrias , Ferro/análise
17.
Sheng Wu Gong Cheng Xue Bao ; 33(12): 1968-1978, 2017 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-29271174

RESUMO

By bioinformatics analysis, a putative keratinase gene gm2886 (Accession number: KY368946) was discovered in the genome of a feather-degrading strain, Streptomyces albidoflavus Fea-10. gm2886 was ligated into integrative Escherichia coli-Streptomyces shuttle vector pSET152 under the promoter PermE and added with C-terminal His-tag. The expression vector was transformed into Streptomyces pactum ACT12 by conjugal transfer and the recombinant protein GM2886-His6 was detected in fermentation broth. GM2886-His6 was purified and characterized. Its size was nearly 36 kDa. GM2886-His6 showed proteolytic activity towards a variety of substrates and could even degrade insoluble substrates, such as azure keratin and chicken feathers. The optimal pH and temperature of GM2886-His6 for proteolysis of casein was pH 10.0 and 50 ℃, respectively. The enzyme activity was inhibited by PMSF, but not EDTA, indicating that GM2886-His6 was a serine proteinase. Our results laid the foundation for the research of the molecular biological mechanism on feather-degrading and for the further utilization of Fea-10.


Assuntos
Genes Bacterianos , Peptídeo Hidrolases/genética , Streptomyces/enzimologia , Animais , Galinhas , Plumas , Concentração de Íons de Hidrogênio , Queratinas , Streptomyces/genética , Temperatura
18.
J Nanosci Nanotechnol ; 11(6): 4995-5000, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21770133

RESUMO

We have used small angle X-ray scattering (SAXS) to quantitatively characterize the morphology of vertically aligned (VA) multiwall carbon nanotube (MWCNT) arrays. We examined the extent of alignment of MWCNTs in terms of order parameter by analyzing SAXS intensity as a function of azimuthal angle. The SAXS measurements at different heights of CNT arrays from the substrate reveal two distinct morphologies and increasing alignment. We are able to quantitatively characterize a real variation in CNT diameters of the VA-MWCNTs through model fitting of the SAXS spectra. It found that the average CNT diameter increases with increasing distance from the substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA