Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(18): e2200607, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35233840

RESUMO

0D hybrid metal halides (0D HMHs) are considered to be promising luminescent emitters. 0D HMHs commonly exhibit self-trapped exciton (STE) emissions originating from the inorganic metal halide anion units. Exploring and utilizing the emission features of the organic cation units in 0D HMHs is highly desired to enrich their optical properties as multifunctional luminescent materials. Here, tunable emissions from organic and inorganic units are successfully achieved in triphenylsulfonium (Ph3 S+ )-based 0D HMHs. Notably, integrated afterglow and STE emissions with adjustable intensities are obtained in (Ph3 S)2 Sn1- x Tex Cl6 (x = 0-1) via the delicate combination of [SnCl6 ]2- and [TeCl6 ]2- . Moreover, such a strategy can be readily extended to develop other HMH materials with intriguing optical properties. As a demonstration, 0D (Ph3 S)2 Zn1- x Mnx Cl4 (x = 0-1) are constructed to achieve integrated afterglow and Mn2+ d-d emissions with high efficiency. Consequently, these novel 0D HMHs with colorful afterglow and STE emissions are applied in multiple anti-counterfeiting applications.

2.
J Am Chem Soc ; 142(26): 11521-11527, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32508093

RESUMO

Here we design an interface between a metal nanoparticle (NP) and a metal-organic framework (MOF) to activate an inert CO2 carboxylation reaction and in situ monitor its unconventional regioselectivity at the molecular level. Using a Kolbe-Schmitt reaction as model, our strategy exploits the NP@MOF interface to create a pseudo high-pressure CO2 microenvironment over the phenolic substrate to drive its direct C-H carboxylation at ambient conditions. Conversely, Kolbe-Schmitt reactions usually demand high reaction temperature (>125 °C) and pressure (>80 atm). Notably, we observe an unprecedented CO2 meta-carboxylation of an arene that was previously deemed impossible in traditional Kolbe-Schmitt reactions. While the phenolic substrate in this study is fixed at the NP@MOF interface to facilitate spectroscopic investigations, free reactants could be activated the same way by the local pressurized CO2 microenvironment. These valuable insights create enormous opportunities in diverse applications including synthetic chemistry, gas valorization, and greenhouse gas remediation.


Assuntos
Imidazóis/química , Nanopartículas Metálicas/química , Estruturas Metalorgânicas/química , Prata/química , Zeolitas/química , Dióxido de Carbono/química , Teoria da Densidade Funcional , Estrutura Molecular , Pressão , Estereoisomerismo , Temperatura
3.
Small ; 16(3): e1905226, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31833672

RESUMO

0D lead-free metal halide nanocrystals (NCs) are an emerging class of materials with intriguing optical properties. Herein, colloidal synthetic routes are presented for the production of 0D Cs3 Cu2 X5 (X = I, Br, and Cl) NCs with orthorhombic structure and well-defined morphologies. All these Cs3 Cu2 X5 NCs exhibit broadband blue-green photoluminescence (PL) emissions in the range of 445-527 nm with large Stokes shifts, which are attributed to their intrinsic self-trapped exciton (STE) emission characteristics. The high PL quantum yield of 48.7% is obtained from Cs3 Cu2 Cl5 NCs, while Cs3 Cu2 I5 NCs exhibit considerable air stability over 45 days. Intriguingly, as X is changed from I to Br and Cl, Cs3 Cu2 X5 NCs exhibit a continuous redshift of emission peaks, which is contrary to the blueshift in CsPbX3 perovskite NCs.

4.
Nat Commun ; 10(1): 4340, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554803

RESUMO

The coloration of some butterflies, Pachyrhynchus weevils, and many chameleons are notable examples of natural organisms employing photonic crystals to produce colorful patterns. Despite advances in nanotechnology, we still lack the ability to print arbitrary colors and shapes in all three dimensions at this microscopic length scale. Here, we introduce a heat-shrinking method to produce 3D-printed photonic crystals with a 5x reduction in lattice constants, achieving sub-100-nm features with a full range of colors. With these lattice structures as 3D color volumetric elements, we printed 3D microscopic scale objects, including the first multi-color microscopic model of the Eiffel Tower measuring only 39 µm tall with a color pixel size of 1.45 µm. The technology to print 3D structures in color at the microscopic scale promises the direct patterning and integration of spectrally selective devices, such as photonic crystal-based color filters, onto free-form optical elements and curved surfaces.

5.
Adv Mater ; 31(15): e1807900, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30687981

RESUMO

Lanthanide-doped nanophosphors are promising in anti-counterfeiting and security printing applications. These nanophosphors can be incorporated as transparent inks that fluoresce by upconverting near-infrared illumination into visible light to allow easy verification of documents. However, these inks typically exhibit a single luminescent color, low emission efficiency, and low print resolutions. Tunable resonator-upconverted emission (TRUE) is achieved by placing upconversion nanoparticles (UCNPs) within plasmonic nanoresonators. A range of TRUE colors are obtained from a single-UCNP species self-assembled within size-tuned gap-plasmon resonances in Al nanodisk arrays. The luminescence intensities are enhanced by two orders of magnitude through emission and absorption enhancements. The enhanced emissive and plasmonic colors are simultaneously employed to generate TRUE color prints that exhibit one appearance under ambient white light, and a multicolored luminescence appearance that is revealed under near-infrared excitation. The printed color and luminescent images are of ultrahigh resolutions (≈50 000 dpi), and enable multiple colors from a single excitation source for increased level of security.

6.
Nat Commun ; 10(1): 25, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604762

RESUMO

Conventional optical security devices provide authentication by manipulating a specific property of light to produce a distinctive optical signature. For instance, microscopic colour prints modulate the amplitude, whereas holograms typically modulate the phase of light. However, their relatively simple structure and behaviour is easily imitated. We designed a pixel that overlays a structural colour element onto a phase plate to control both the phase and amplitude of light, and arrayed these pixels into monolithic prints that exhibit complex behaviour. Our fabricated prints appear as colour images under white light, while projecting up to three different holograms under red, green, or blue laser illumination. These holographic colour prints are readily verified but challenging to emulate, and can provide enhanced security in anti-counterfeiting applications. As the prints encode information only in the surface relief of a single polymeric material, nanoscale 3D printing of customised masters may enable their mass-manufacture by nanoimprint lithography.

7.
J Am Chem Soc ; 139(33): 11513-11518, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28743183

RESUMO

We demonstrate a molecular-level observation of driving CO2 molecules into a quasi-condensed phase on the solid surface of metal nanoparticles (NP) under ambient conditions of 1 bar and 298 K. This is achieved via a CO2 accumulation in the interface between a metal-organic framework (MOF) and a metal NP surface formed by coating NPs with a MOF. Using real-time surface-enhanced Raman scattering spectroscopy, a >18-fold enhancement of surface coverage of CO2 is observed at the interface. The high surface concentration leads CO2 molecules to be in close proximity with the probe molecules on the metal surface (4-methylbenzenethiol), and transforms CO2 molecules into a bent conformation without the formation of chemical bonds. Such linear-to-bent transition of CO2 is unprecedented at ambient conditions in the absence of chemical bond formation, and is commonly observed only in pressurized systems (>105 bar). The molecular-level observation of a quasi-condensed phase induced by MOF coating could impact the future design of hybrid materials in diverse applications, including catalytic CO2 conversion and ambient solid-gas operation.

8.
Adv Mater ; 28(30): 6266, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27493069

RESUMO

On page 6322, J. F. Wang and co-workers report a wet-chemistry method for the preparation of colloidal Au nanocups and their plasmonic properties. The Au nanocups are prepared through single-vertex-initiated Au deposition on PbS nano-octahedrons and subsequent selective dissolution of PbS. Owing to the orientation-dependent coupling strengths, the obtained Au nanocups display orientation-dependent plasmonic properties and Raman enhancements when deposited on substrates.

9.
Adv Mater ; 28(30): 6322-31, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27167721

RESUMO

Colloidal gold nanocups are synthesized through single-vertex-initiated gold deposition on PbS nanooctahedrons and subsequent selective dissolution of the PbS component. They possess strong magnetic plasmon resonance and exhibit remarkable orientation-dependent plasmonic properties when deposited on flat substrates. They can also effectively couple s-polarized light into the interfacial region between the nanocup and substrate.

10.
J Phys Chem Lett ; 7(8): 1501-6, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27050645

RESUMO

Current microscale tracking of chemical kinetics is limited to destructive ex situ methods. Here we utilize Ag nanocube-based plasmonic liquid marble (PLM) microreactor for in situ molecular-level identification of reaction dynamics. We exploit the ultrasensitive surface-enhanced Raman scattering (SERS) capability imparted by the plasmonic shell to unravel the mechanism and kinetics of aryl-diazonium surface grafting reaction in situ, using just a 2-µL reaction droplet. This reaction is a robust approach to generate covalently functionalized metallic surfaces, yet its kinetics remain unknown to date. Experiments and simulations jointly uncover a two-step sequential grafting process. An initial Langmuir chemisorption of sulfonicbenzene diazonium (dSB) salt onto Ag surfaces forms an intermediate sulfonicbenzene monolayer (Ag-SB), followed by subsequent autocatalytic multilayer growth of Ag-SB3. Kinetic rate constants reveal 19-fold faster chemisorption than multilayer growth. Our ability to precisely decipher molecular-level reaction dynamics creates opportunities to develop more efficient processes in synthetic chemistry and nanotechnology.

11.
Small ; 10(23): 4940-50, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25048617

RESUMO

A major challenge in plasmonic hot spot fabrication is to efficiently increase the hot spot volumes on single metal nanoparticles to generate stronger signals in plasmon-enhanced applications. Here, the synthesis of designer nanoparticles, where plasmonic-active Au nanodots are selectively deposited onto the edge/tip hot spot regions of Ag nanoparticles, is demonstrated using a two-step seed-mediated precision synthesis approach. Such a "hot spots over hot spots" strategy leads to an efficient enhancement of the plasmonic hot spot volumes on single Ag nanoparticles. Through cathodoluminescence hyperspectral imaging of these selective edge gold-deposited Ag octahedron (SEGSO), the increase in the areas and emission intensities of hot spots on Ag octahedra are directly visualized after Au deposition. Single-particle surface-enhanced Raman scattering (SERS) measurements demonstrate 10-fold and 3-fold larger SERS enhancement factors of the SEGSO as compared to pure Ag octahedra and non-selective gold-deposited Ag octahedra (NSEGSO), respectively. The experimental results corroborate well with theoretical simulations, where the local electromagnetic field enhancement of our SEGSO particles is 15-fold and 1.3-fold stronger than pure Ag octahedra and facet-deposited particles, respectively. The growth mechanisms of such designer nanoparticles are also discussed together with a demonstration of the versatility of this synthetic protocol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA