Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Adv Sci (Weinh) ; : e2404130, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39413023

RESUMO

Wound healing impairment in diabetes mellitus is associated with an excessive inflammatory response and defective regeneration capability with suppressed Hedgehog (Hh) signaling. The bromodomain protein BRD9, a subunit of the non-canonical BAF chromatin-remodeling complex, is critical for macrophage inflammatory response. However, whether the epigenetic drug BRD9 degrader can attenuate the sustained inflammatory state of wounds in diabetes remains unclear. Without a bona fide immune microenvironment, Hh signaling activation fails to effectively rescue the suppressed proliferative ability of dermal fibroblasts and the vascularization of endothelial cells. Therefore, a silk-based core-shell microneedle (MN) patch is proposed to dynamically modulate the wound immune microenvironment and the regeneration process. Specifically, the BRD9 degrader released from the shell of the MNs mitigated the excessive inflammatory response in the early phase. Subsequently, the positively charged Hh signaling agonist is released from the negatively charged core of the silk fibroin nanofibers and promotes the phase transition from inflammation to regeneration, including re-epithelialization, collagen deposition, and angiogenesis. These findings suggest that the programmed silk-based core-shell MN patch is an ideal therapeutic strategy for effective skin regeneration in diabetic wounds.

2.
Nat Commun ; 15(1): 5994, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39013863

RESUMO

Chromatin remodeler ARID1A regulates gene transcription by modulating nucleosome positioning and chromatin accessibility. While ARID1A-mediated stage and lineage-restricted gene regulation during cell fate canalization remains unresolved. Using osteoclastogenesis as a model, we show that ARID1A transcriptionally safeguards the osteoclast (OC) fate canalization during proliferation-differentiation switching at single-cell resolution. Notably, ARID1A is indispensable for the transcriptional apparatus condensates formation with coactivator BRD4/lineage-specifying transcription factor (TF) PU.1 at Nfatc1 super-enhancer during safeguarding the OC fate canalization. Besides, the antagonist function between ARID1A-cBAF and BRD9-ncBAF complex during osteoclastogenesis has been validated with in vitro assay and compound mutant mouse model. Furthermore, the antagonistic function of ARID1A-"accelerator" and BRD9-"brake" both depend on coactivator BRD4-"clutch" during osteoclastogenesis. Overall, these results uncover sophisticated cooperation between chromatin remodeler ARID1A, coactivator, and lineage-specifying TF at super-enhancer of lineage master TF in a condensate manner, and antagonist between distinct BAF complexes in the proper and balanced cell fate canalization.


Assuntos
Diferenciação Celular , Linhagem da Célula , Proteínas de Ligação a DNA , Osteoclastos , Osteogênese , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Osteoclastos/metabolismo , Osteoclastos/citologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos , Osteogênese/genética , Osteogênese/fisiologia , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Proliferação de Células , Análise de Célula Única , Proteínas que Contêm Bromodomínio , Proteínas Nucleares
3.
Animals (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731369

RESUMO

Yaks are the main pillar of plateau animal husbandry and the material basis of local herdsmen's survival. The level of mineral elements in the body is closely related to the production performance of yaks. In this study, we performed a comprehensive analysis of rumen epithelial morphology, transcriptomics and metagenomics to explore the dynamics of rumen functions, microbial colonization and functional interactions in yaks from birth to adulthood. Bacteria, eukaryotes, archaea and viruses colonized the rumen of yaks from birth to adulthood, with bacteria being the majority. Bacteroidetes and Firmicutes were the dominant phyla in five developmental stages, and the abundance of genus Lactobacillus and Fusobacterium significantly decreased with age. Glycoside hydrolase (GH) genes were the most highly represented in five different developmental stages, followed by glycosyltransferases (GTs) and carbohydrate-binding modules (CBMs), where the proportion of genes coding for CBMs increased with age. Integrating host transcriptome and microbial metagenome revealed 30 gene modules related to age, muscle layer thickness, nipple length and width of yaks. Among these, the MEmagenta and MEturquoise were positively correlated with these phenotypic traits. Twenty-two host genes involved in transcriptional regulation related to metal ion binding (including potassium, sodium, calcium, zinc, iron) were positively correlated with a rumen bacterial cluster 1 composed of Alloprevotella, Paludibacter, Arcobacter, Lactobacillus, Bilophila, etc. Therefore, these studies help us to understand the interaction between rumen host and microorganisms in yaks at different ages, and further provide a reliable theoretical basis for the development of feed and mineral element supplementation for yaks at different ages.

4.
J Am Chem Soc ; 146(19): 13163-13175, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38698548

RESUMO

A pretargeted strategy that decouples targeting vectors from radionuclides has shown promise for nuclear imaging and/or therapy in vivo. However, the current pretargeted approach relies on the use of antibodies or nanoparticles as the targeting vectors, which may be compromised by poor tissue penetration and limited accumulation of targeting vectors in the tumor tissues. Herein, we present an orthogonal dual-pretargeted approach by combining stimuli-triggered in situ self-assembly strategy with fast inverse electron demand Diels-Alder (IEDDA) reaction and strong biotin-streptavidin (SA) interaction for near-infrared fluorescence (NIR FL) and magnetic resonance (MR) imaging of tumors. This approach uses a small-molecule probe (P-Cy-TCO&Bio) containing both biotin and trans-cyclooctene (TCO) as a tumor-targeting vector. P-Cy-TCO&Bio can efficiently penetrate subcutaneous HeLa tumors through biotin-assisted targeted delivery and undergo in situ self-assembly to form biotinylated TCO-bearing nanoparticles (Cy-TCO&Bio NPs) on tumor cell membranes. Cy-TCO&Bio NPs exhibited an "off-on" NIR FL and retained in the tumors, offering a high density of TCO and biotin groups for the concurrent capture of Gd-chelate-labeled tetrazine (Tz-Gd) and IR780-labeled SA (SA-780) via the orthogonal IEDDA reaction and SA-biotin interaction. Moreover, Cy-TCO&Bio NPs offered multiple-valent binding modes toward SA, which additionally regulated the cross-linking of Cy-Gd&Bio NPs into microparticles (Cy-Gd&Bio/SA MPs). This process could significantly (1) increase r1 relaxivity and (2) enhance the accumulation of Tz-Gd and SA-780 in the tumors, resulting in strong NIR FL, bright MR contrast, and an extended time window for the clear and precise imaging of HeLa tumors.


Assuntos
Biotina , Ciclo-Octanos , Imageamento por Ressonância Magnética , Nanopartículas , Ciclo-Octanos/química , Humanos , Nanopartículas/química , Imageamento por Ressonância Magnética/métodos , Células HeLa , Biotina/química , Animais , Imagem Óptica , Biotinilação , Camundongos , Estreptavidina/química , Reação de Cicloadição , Fluorescência
5.
Front Bioeng Biotechnol ; 12: 1382085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572358

RESUMO

In this study, a high-efficiency superparamagnetic drug delivery system was developed for preclinical treatment of bladder cancer in small animals. Two types of nanoparticles with magnetic particle imaging (MPI) capability, i.e., single- and multi-core superparamagnetic iron oxide nanoparticles (SPIONs), were selected and coupled with bladder anti-tumor drugs by a covalent coupling scheme. Owing to the minimal particle size, magnetic field strengths of 270 mT with a gradient of 3.2 T/m and 260 mT with a gradient of 3.7 T/m were found to be necessary to reach an average velocity of 2 mm/s for single- and multi-core SPIONs, respectively. To achieve this, a method of constructing an in vitro magnetic field for drug delivery was developed based on hollow multi-coils arranged coaxially in close rows, and magnetic field simulation was used to study the laws of the influence of the coil structure and parameters on the magnetic field. Using this method, a magnetic drug delivery system of single-core SPIONs was developed for rabbit bladder therapy. The delivery system consisted of three coaxially and equidistantly arranged coils with an inner diameter of Φ50 mm, radial height of 85 mm, and width of 15 mm that were positioned in close proximity to each other. CCK8 experimental results showed that the three types of drug-coupled SPION killed tumor cells effectively. By adjusting the axial and radial positions of the rabbit bladder within the inner hole of the delivery coil structure, the magnetic drugs injected could undergo two-dimensional delivery motions and were delivered and aggregated to the specified target location within 12 s, with an aggregation range of about 5 mm × 5 mm. In addition, the SPION distribution before and after delivery was imaged using a home-made open-bore MPI system that could realistically reflect the physical state. This study contributes to the development of local, rapid, and precise drug delivery and the visualization of this process during cancer therapy, and further research on MPI/delivery synchronization technology is planned for the future.

6.
Cell Signal ; 119: 111154, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565412

RESUMO

BACKGROUND: Circular RNAs (circRNAs), which are covalently closed non-coding RNAs, are frequently dysregulated in cancer. However, their precise role in bladder cancer (BCa) remains largely unknown. METHODS: Expression of hsa_circ_0005320 in tissues and cell lines was detected using quantitative real-time PCR. Proliferation and colony forming capacity of BCa cells were assessed using Cell Counting Kit-8, ethynyl-labeled deoxyuridine, and colony formation assays. The cell cycle was analyzed using flow cytometry. Protein expression of insulin-like growth factor II mRNA-binding protein 3 (IGF2BP3) and cyclin dependent kinase 2 (CDK2) was examined using western blots. The binding of RNA and protein was validated using RNA immunoprecipitation. Additionally, xenograft tumor models were established to validate the function of hsa_circ_0005320 in vivo. RESULTS: We screened hsa_circ_0005320 from previous high-throughput sequencing and found that it was highly expressed in BCa tissues and associated with tumor differentiation and depth of invasion in BCa patients. Through functional experiments, we demonstrated that hsa_circ_0005320 promoted cell proliferation and regulated the cell cycle. Mechanistically, hsa_circ_0005320 interacted with and upregulated the expression of IGF2BP3, which binds to and enhances the stability of CDK2 mRNA. Furthermore, knockdown of hsa_circ_0005320 resulted in a reduction in tumor burden in vivo. CONCLUSIONS: Collectively, these findings highlight the pro-oncogenic role of hsa_circ_0005320 in BCa through the IGF2BP3/CDK2 axis, providing valuable insights into the mechanism of circRNAs in tumor progression.


Assuntos
Ciclo Celular , Proliferação de Células , Quinase 2 Dependente de Ciclina , RNA Circular , Proteínas de Ligação a RNA , Neoplasias da Bexiga Urinária , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Circular/metabolismo , RNA Circular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética
7.
Carbohydr Res ; 538: 109080, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513464

RESUMO

Polysaccharides have attracted immense attention as the largest source of bioactive compounds. Its bioavailability and bioactivity can be improved by utilizing degradation enzymes to reduce their molecular weight and viscosity. In this study, a 654 bp gene encoding xylanase was screened from the genome of Bacillus altitudinis JYY-02 and overexpressed in Escherichia coli Rosetta (DE3). The recombinant xylanase with a molecular weight of 27.98 kDa was purified (11.7-fold) using Ni-NTA affinity chromatography, with a 43.6% final yield. Through molecular docking, Glu, Arg, Tyr, and Trp were found to be the main amino acids involved in the interaction between xylanase and xylobiose. The effects of pH, temperature, metal ions, and substrates on xylanase activity were determined, and the results showed that the highest catalytic activity was displayed at pH 6.5, 50 °C temperature, with Cu2+ as an activator and xylan as the substrate. The Km (substrate concentration that yields a half-maximal velocity) and Vmax (maximum velocity) of recombinant xylanase were 6.876 mg/mL and 10984.183 µmol/mg∙pr/min, respectively. The recombinant xylanase was thermostable, with 85% and 39% of the enzymatic activity retained after 1 h at 60 °C and 1 h at 90 °C, respectively. The recombinant xylanase demonstrated a significant clarifying effect on fruit juices.


Assuntos
Bacillus , Endo-1,4-beta-Xilanases , Endo-1,4-beta-Xilanases/metabolismo , Simulação de Acoplamento Molecular , Polissacarídeos , Bacillus/genética , Temperatura , Xilanos/química , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Clonagem Molecular , Especificidade por Substrato
8.
Am J Chin Med ; 52(1): 231-252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328828

RESUMO

Berberine has been demonstrated to alleviate cerebral ischemia/reperfusion injury, but its neuroprotective mechanism has yet to be understood. Studies have indicated that ischemic neuronal damage was frequently driven by autophagic/lysosomal dysfunction, which could be restored by boosting transcription factor EB (TFEB) nuclear translocation. Therefore, this study investigated the pharmacological effects of berberine on TFEB-regulated autophagic/lysosomal signaling in neurons after cerebral stroke. A rat model of ischemic stroke and a neuronal ischemia model in HT22 cells were prepared using middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. Berberine was pre-administered at a dose of 100[Formula: see text]mg/kg/d for three days in rats and 90[Formula: see text][Formula: see text]M in HT22 neurons for 12[Formula: see text]h. 24[Formula: see text]h after MCAO and 2[Formula: see text]h after OGD, the penumbral tissues and OGD neurons were obtained to detect nuclear and cytoplasmic TFEB, and the key proteins in the autophagic/lysosomal pathway were examined using western blot and immunofluorescence, respectively. Meanwhile, neuron survival, infarct volume, and neurological deficits were assessed to evaluate the therapeutic efficacy. The results showed that berberine prominently facilitated TFEB nuclear translocation, as indicated by increased nuclear expression in penumbral neurons as well as in OGD HT22 cells. Consequently, both autophagic activity and lysosomal capacity were simultaneously augmented to alleviate the ischemic injury. However, berberine-conferred neuroprotection could be greatly counteracted by lysosomal inhibitor Bafilomycin A1 (Baf-A1). Meanwhile, autophagy inhibitor 3-Methyladenine (3-MA) also slightly neutralized the pharmacological effect of berberine on ameliorating autophagic/lysosomal dysfunction. Our study suggests that berberine-induced neuroprotection against ischemic stroke is elicited by enhancing autophagic flux via facilitation of TFEB nuclear translocation in neurons.


Assuntos
Berberina , Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Autofagia , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/farmacologia
9.
Adv Healthc Mater ; 13(12): e2304315, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38261729

RESUMO

Senile wound healing risks a variety of health complications and makes both economic and psychological burdens on patients greatly. Poor activity of aged dermal fibroblasts (A-FBs) and local disordered immunoreaction in the deep dermis contribute to delayed wound healing. Therefore, the locally complex microenvironment in deep requires additional processing. Herein, a novel double-layer hyaluronic acid methacrylate (HAMA)/polyvinyl alcohol (PVA) microneedle patch (MNP) coated by young fibroblast-derived exosomes (Y-EXOs) (Y-EXOs@HAMA/PVA MNP) is presented for deep drug delivery, aged wound healing and immunoregulation. A spraying and freeze-drying method is applied for keeping the bioactivity of the nanovesicles. An ideal loading of Y-EXOs and enhanced strength for penetration have realized after circulation for times. The Y-EXOs@HAMA/PVA MNP shows an excellent influence on delayed wound healing of aged skin with active A-FBs, more deposition of collagen and less production of IL-17A compared with application of aged fibroblast-derived exosomes (A-EXOs). Moreover, the content microRNAs in Y-EXOs and A-EXOs are sequenced for further study. This study initiatively demonstrates that Y-EXOs have effective function on both anti-aging and anti-inflammation and Y-EXOs@HAMA/PVA MNP is expected as a novel strategy for deep drug delivery for promoting hard wound healing in aged skin in future clinical application.


Assuntos
Exossomos , Fibroblastos , Agulhas , Pele , Cicatrização , Cicatrização/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/química , Animais , Fibroblastos/metabolismo , Humanos , Pele/metabolismo , Imunoterapia/métodos , Ácido Hialurônico/química , Regeneração/efeitos dos fármacos , Camundongos , Álcool de Polivinil/química , Masculino , Envelhecimento da Pele/efeitos dos fármacos , MicroRNAs/metabolismo
10.
Angew Chem Int Ed Engl ; 63(4): e202314039, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38055211

RESUMO

We report here a tumor-pretargted theranostic approach for multimodality imaging-guided synergistic cancer PDT by cascade alkaline phosphatase (ALP)-mediated in situ self-assembly and bioorthogonal inverse electron demand Diels-Alder (IEDDA) reaction. Using the enzymatic catalysis of ALP that continuously catalyses the dephosphorylation and self-assembly of trans-cyclooctene (TCO)-bearing P-FFGd-TCO, a high density of fluorescent and magnetic TCO-containing nanoparticles (FMNPs-TCO) can be synthesized and retained on the membrane of tumor cells. They can act as 'artificial antigens' amenable to concurrently capture lately administrated tetrazine (Tz)-decorated PS (775NP-Tz) and carbonic anhydrase (CA) inhibitor (SA-Tz) via the fast IEDDA reaction. This two-step pretargeting process can further induce FMNPs-TCO regrowth into microparticles (FMNPs-775/SA) directly on tumor cell membranes, which is analyzed by bio-SEM and fluorescence imaging. Thus, efficient enrichment of both SA-Tz and 775NP-Tz in tumors can be achieved, allowing to alleviate hypoxia by continuously inhibiting CA activity and improving PDT of tumors. Findings show that subcutaneous HeLa tumors could be completely eradicated and no tumor recurred after irradiation with an 808 nm laser (0.33 W cm-2 , 10 min). This pretargeted approach may be applied to enrich other therapeutic agents in tumors to improve targeted therapy.


Assuntos
Neoplasias , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Inibidores da Anidrase Carbônica/farmacologia , Compostos Radiofarmacêuticos , Medicina de Precisão , Linhagem Celular Tumoral , Reação de Cicloadição , Ciclo-Octanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
12.
Biomaterials ; 305: 122454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159360

RESUMO

Optically active organic nanoparticles capable of emitting strong near-infrared II (NIR-II) fluorescence and eliciting tumor hyperthermia are promising for tumor imaging and photothermal therapy (PTT). However, their applications for the treatment of pancreatic tumors via mere PTT are challenging as both the nanoparticles and light are hard to enter the deeply located pancreatic tumors. Here, we report a NIR-II light excitable, carbonic anhydrase (CA)-targeting cisplatin prodrug-decorated nanoparticle (IRNPs-SBA/PtIV) for NIR-II fluorescence imaging (FLI)-guided combination PTT and chemotherapy of pancreatic tumors. IRNPs-SBA/PtIV is designed to hold a high photothermal conversion efficiency (PCE ≈ 65.17 %) under 1064 nm laser excitation, a strong affinity toward CA (Kd = 14.40 ± 5.49 nM), and a prominent cisplatin release profile in response to glutathione (GSH) and 1064 nm laser irradiation. We show that IRNPs-SBA/PtIV can be actively delivered into pancreatic tumors where the CA is upregulated, and emits NIR-II fluorescence to visualize tumors with a high sensitivity and penetration depth under 980 nm laser excitation. Moreover, the tumor-resided IRNPs-SBA/PtIV can efficiently inhibit the CA activity and consequently, relieve the acidic and hypoxic tumor microenvironment, benefiting to intensify chemotherapy. Guided by the NIR-II FLI, IRNPs-SBA/PtIV is capable of efficiently inhibiting pancreatic tumor growth via combinational PTT and chemotherapy with 1064 nm laser excitation under a low-power density (0.5 W cm-2, 10 min). This study demonstrates promise to fabricate NIR-II excitable nanoparticles for FLI-guided precise theranostics of pancreatic tumors.


Assuntos
Anidrases Carbônicas , Hipertermia Induzida , Nanopartículas , Neoplasias Pancreáticas , Humanos , Medicina de Precisão , Fototerapia/métodos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Linhagem Celular Tumoral , Hipertermia Induzida/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
13.
J Am Chem Soc ; 145(50): 27838-27849, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38059465

RESUMO

Hydrogen sulfide (H2S) has shown promise for gas therapy. However, it is still controversial whether H2S can remodel the tumor microenvironment (TME) and induce robust antitumor immunity. Here, a tumor-targeting and TME-responsive "smart" lipid nanoparticle (1-JK-PS-FA) is presented, which is capable of delivering and releasing H2S specifically in tumor tissues for on-demand H2S gas and photodynamic immunotherapy. 1-JK-PS-FA enables a burst release of H2S in the acidic TME, which promptly reduces the embedded organic electrochromic materials and consequently switches on near-infrared fluorescence and photodynamic activity. Furthermore, we found that high levels of H2S can reprogram the TME by reducing tumor interstitial fluid pressure, promoting angiogenesis, increasing vascular permeability, ameliorating hypoxia, and reducing immunosuppressive conditions. This leads to increased tumor uptake of 1-JK-PS-FA, thereby enhancing PDT efficacy and eliciting strong immunogenic cell death during 808 nm laser irradiation. Therefore, 1-JK-PS-FA permits synergistic H2S gas and photodynamic immunotherapy, effectively eradicating orthotopic breast tumors and preventing tumor metastasis and recurrence. This work showcases the capacity of H2S to reprogram the TME to enhance H2S gas and immunotherapy.


Assuntos
Neoplasias Mamárias Animais , Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Microambiente Tumoral , Imunoterapia , Transporte Biológico , Linhagem Celular Tumoral
14.
Front Vet Sci ; 10: 1204706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808112

RESUMO

The development of the four stomachs of yak is closely related to its health and performance, however the underlying molecular mechanisms are largely unknown. Here, we systematically analyzed mRNAs of four stomachs in five growth time points [0 day, 20 days, 60 days, 15 months and 3 years (adult)] of yaks. Overall, the expression patterns of DEmRNAs were unique at 0 d, similar at 20 d and 60 d, and similar at 15 m and adult in four stomachs. The expression pattern in abomasum was markedly different from that in rumen, reticulum and omasum. Short Time-series Expression Miner (STEM) analysis demonstrated that multi-model spectra are drastically enriched over time in four stomachs. All the identified mRNAs in rumen, reticulum, omasum and abomasum were classified into 6, 4, 7, and 5 cluster profiles, respectively. Modules 9, 38, and 41 were the most significant three colored modules. By weighted gene co-expression network analysis (WGCNA), a total of 5,486 genes were categorized into 10 modules. CCKBR, KCNQ1, FER1L6, and A4GNT were the hub genes of the turquoise module, and PAK6, TRIM29, ADGRF4, TGM1, and TMEM79 were the hub genes of the blue module. Furthermore, functional KEGG enrichment analysis suggested that the turquoise module was involved in gastric acid secretion, sphingolipid metabolism, ether lipid metabolism, etc., and the blue module was enriched in pancreatic secretion, pantothenate and CoA biosynthesis, and starch and sucrose metabolism, etc. Our study aims to lay a molecular basis for the study of the physiological functions of rumen, reticulum, omasum and abomasum in yaks. It can further elucidate the important roles of these mRNAs in regulation of growth, development and metabolism in yaks, and to provide a theoretical basis for age-appropriate weaning and supplementary feeding in yaks.

15.
Animals (Basel) ; 13(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37760363

RESUMO

The yak (Bos grunniens) was domesticated in the high-altitude QTP. Research about their genetic diversity and population structure is limited. In this study, we resequenced the genome of 494 domestic yaks using Specific-Locus Amplified Fragment Sequencing (SLAF-seq). The survey was conducted on six populations sampled from isolated locations in China in order to analyze their structure and genetic diversity. These six domestic populations were clearly grouped into two independent clusters, with Jinchuan, Changtai, and Jiulong showing a tight genetic relationship with the wild yak. Nerve development pathways were enriched with GO enrichment analysis of 334 domesticated genes. Major genomic regions associated with the differentiation of domestic yaks were detected. These findings provide preliminary information on the yak genome variability, useful to understand the genomic characteristics of different populations in QTP.

16.
ACS Nano ; 17(17): 17468-17475, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37602689

RESUMO

Biological channels can rapidly and continuously modulate ion transport behaviors in response to external stimuli, which play essential roles in manipulating physiological and pathological processes in cells. Here, to mimic the biological channels, a bionic nanochannel is developed by synergizing a cationic silicon-substituted rhodamine (SiRh) with a glass nanopipette for transmembrane single-cell quantification. Taking the fast and reversible nucleophilic addition reaction between glutathione (GSH) and SiRh, the bionic nanochannel shows a fast and reversible response to GSH, with its inner-surface charges changing between positive and negative charges, leading to a distinct and reversible switch in ionic current rectification (ICR). With the bionic nanochannel, spatiotemporal-resolved operation is performed to quantify endogenous GSH in a single cell, allowing for monitoring of intracellular GSH fluctuation in tumor cells upon photodynamic therapy and ferroptosis. Our results demonstrate that it is a feasible tool for in situ quantification of the endogenous GSH in single cells, which may be adapted to addressing other endogenous biomolecules in single cells by usage of other stimuli-responsive probes.


Assuntos
Biônica , Ferroptose , Vidro , Glutationa , Transporte de Íons , Rodaminas
17.
Animals (Basel) ; 13(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238139

RESUMO

The objective of this study was to assess the transcriptome of the mammary tissue of four yaks during the whole lactation cycle. For this purpose, biopsies of the mammary gland were performed at -30, -15, 1, 15, 30, 60, 120, 180, and 240 days relative to parturition (d). The transcriptome analysis was performed using a commercial bovine microarray platform and the results were analyzed using several bioinformatic tools. The statistical analysis using an overall false discovery rate ≤ 0.05 for the effect of whole lactation and p < 0.05 for each comparison identified >6000 differentially expressed genes (DEGs) throughout lactation, with a large number of DEGs observed at the onset (1 d vs. -15 d) and at the end of lactation (240 d vs. 180 d). Bioinformatics analysis revealed a major role of genes associated with BTA3, BTA4, BTA6, BTA9, BTA14, and BTA28 in lactation. Functional analysis of DEG underlined an overall induction of lipid metabolism, suggesting an increase in triglycerides synthesis, likely regulated by PPAR signaling. The same analysis revealed an induction of amino acid metabolism and secretion of protein, with a concomitant decrease in proteasome, indicating a major role of amino acid handling and reduced protein degradation in the synthesis and secretion of milk proteins. Glycan biosynthesis was induced for both N-glycan and O-glycan, suggesting increased glycan content in the milk. The cell cycle and immune response, especially antigen processing and presentation, were strongly inhibited during lactation, suggesting that morphological changes are minimized during lactation, while the mammary gland prevents immune hyper-response. Transcripts associated with response to radiation and low oxygen were enriched in the down-regulated DEG affected by the stage of lactation. Except for this last finding, the functions affected by the transcriptomic adaptation to lactation in mammary tissue of yak are very similar to those observed in dairy cows.

18.
Waste Manag ; 164: 200-208, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37062200

RESUMO

The economic and environmental impacts of the reverse logistics (RL) process (including drop-off, collection and transportation [C&T]) of the waste disposal chain are becoming increasingly prominent with the increasing generation of municipal solid waste (MSW) and promotion of MSW classification. Quantitative evaluation of this process from economic and environmental perspectives is of great significance for MSW management. This study focused on the financial capital, materials, and energy consumption in the RL process in Xi an City, China. Based on field investigation, the magnitude of pollutant emissions from MSW C&T vehicles over their life cycle was predicted using the GREET software and total RL life-cycle cost and life-cycle assessment were analyzed. The results showed that the finical costs of RL were $46.35-$49.03 per ton of food waste and $62.52-$88.84 per ton of residual waste; the environmental impacts caused by the RL process accounted for 79.24%-96.00% and 20.87%-68.55% of the entire food waste and residual waste management chains, respectively. Labor costs were the biggest financial expenditure and the fuel cycle of C&T vehicles caused the majority of the environmental impacts. Source-separated waste management scenarios represented more environmental benefits but poorer economic positions. In the future, improving MSW source-separation accuracy, replacing diesel C&T vehicles with electric ones, and optimizing the RL system could reduce the environmental and economic impacts of the entire waste management system.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Resíduos Sólidos , Eliminação de Resíduos/métodos , Alimentos , Meio Ambiente , Gerenciamento de Resíduos/métodos
19.
Animals (Basel) ; 13(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36899781

RESUMO

Efficient nutritional assimilation and energy metabolism in the stomachs of yaks contribute to their adaption to harsh environments. Accurate gene expression profile analysis will help further reveal the molecular mechanism of nutrient and energy metabolism in the yak stomach. RT-qPCR is regarded as an accurate and dependable method for analyzing gene expression. The selection of reference genes is essential to obtain meaningful RT-qPCR results, especially in longitudinal gene expression studies of tissues and organs. Our objective was to select and validate optimal reference genes from across the transcriptome as internal controls for longitudinal gene expression studies in the yak stomach. In this study, 15 candidate reference genes (CRGs) were determined according to transcriptome sequencing (RNA-seq) results and the previous literature. The expression levels of these 15 CRGs were quantified using RT-qPCR in the yak stomach, including the rumen, reticulum, omasum and abomasum at five stages: 0 days, 20 days, 60 days, 15 months and three years old (adult). Subsequently, the expression stabilities of these 15 CRGs were evaluated via four algorithms: geNorm, NormFinder, BestKeeper and the comparative CT method. Furthermore, RefFinder was employed to obtain a comprehensive ranking of the stability of CRGs. The analysis results indicate that RPS15, MRPL39 and RPS23 are the most stable genes in the yak stomach throughout the growth cycle. In addition, to verify the reliability of the selected CRGs, the relative expression levels of HMGCS2 were quantified via RT-qPCR using the three most stable or the three least stable CRGs. Overall, we recommend combining RPS15, MRPL39 and RPS23 as reference genes for the normalization of RT-qPCR data in the yak stomach throughout the growth cycle.

20.
Int J Biol Macromol ; 235: 123908, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870652

RESUMO

In this study, two promising eco-friendly modification techniques, electron beam (EB) irradiation and hydrogen peroxide (H2O2) oxidation, were used to prepare oxidized wheat starch. Neither irradiation nor oxidation changed starch granule morphology, crystalline pattern, and Fourier transform infrared spectra pattern. Nevertheless, EB irradiation decreased the crystallinity and the absorbance ratios of 1047/1022 cm-1 (R1047/1022), but oxidized starch exhibited the opposite results. Both irradiation and oxidation treatments reduced the amylopectin molecular weight (Mw), pasting viscosities, and gelatinization temperatures, while increasing the amylose Mw, solubility and paste clarity. Notably, EB irradiation pretreatment dramatically elevated the carboxyl content of oxidized starch. In addition, irradiated-oxidized starches displayed higher solubility, paste clarity, and lower pasting viscosities than single oxidized starches. The main reason was that EB irradiation preferentially attacks the starch granules, degrades the starch molecules, and depolymerizes the starch chains. Therefore, this green method of irradiation-assisted oxidation of starch is promising and may promote the appropriate application of modified wheat starch.


Assuntos
Amido , Triticum , Amido/química , Triticum/química , Peróxido de Hidrogênio , Elétrons , Amilopectina/química , Amilose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA