Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Osteoarthritis Cartilage ; 31(12): 1602-1611, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716405

RESUMO

OBJECTIVES: Histological scoring remains the gold-standard for quantifying post-traumatic osteoarthritis (ptOA) in animal models, allowing concurrent evaluation of numerous joint tissues. Available systems require scoring multiple sections/joint making analysis laborious and expensive. We investigated if a single section allowed equivalent quantitation of pathology in different joint tissues and disease stages, in three ptOA models. METHOD: Male 10-12-week-old C57BL/6 mice underwent surgical medial-meniscal-destabilization, anterior-cruciate-ligament (ACL) transection, non-invasive-ACL-rupture, or served as sham-surgical, non-invasive-ACL-strain, or naïve/non-operated controls. Mice (n = 12/group) were harvested 1-, 4-, 8-, and 16-week post-intervention. Serial sagittal toluidine-blue/fast-green stained sections of the medial-femoro-tibial joint (n = 7/joint, 84 µm apart) underwent blinded scoring of 40 histology-outcomes. We evaluated agreement between single-slide versus entire slide-set maximum or median scores (weighted-kappa), and sensitivity/specificity of single-slide versus median/maximum to detect OA pathology. RESULTS: A single optimal mid-sagittal section showed excellent agreement with median (weighted-kappa 0.960) and maximum (weighted-kappa 0.926) scores. Agreement for individual histology-outcomes was high with only 19/240 median and 15/240 maximum scores having a weighted-kappa ≤0.4, the majority of these (16/19 and 11/15) in control groups. Statistically-significant histology-outcome differences between ptOA models and their controls detected with the entire slide-set were reliably reproduced using a single slide (sensitivity >93.15%, specificity >93.10%). The majority of false-negatives with single-slide scoring were meniscal and subchondral bone histology-outcomes (89%) and occurred in weeks 1-4 post-injury (84%). CONCLUSION: A single mid-sagittal slide reduced the time needed to score diverse histopathological changes by 87% without compromising the sensitivity or specificity of the analysis, across a variety of ptOA models and time-points.


Assuntos
Lesões do Ligamento Cruzado Anterior , Osteoartrite do Joelho , Masculino , Camundongos , Animais , Feminino , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/patologia , Camundongos Endogâmicos C57BL , Articulação do Joelho/patologia , Lesões do Ligamento Cruzado Anterior/patologia , Tíbia/patologia , Modelos Animais de Doenças
2.
J Vis Exp ; (158)2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32420987

RESUMO

Osteoarthritis (OA) is one of the most prevalent musculoskeletal diseases, affecting patients suffering from pain and physical limitations. Recent evidence indicates a potential inflammatory component of the disease, with both T-cells and monocytes/macrophages potentially associated with the pathogenesis of OA. Further studies postulated an important role for subsets of both inflammatory cell lineages, such as Th1, Th2, Th17, and T-regulatory lymphocytes, and M1, M2, and synovium-tissue-resident macrophages. However, the interaction between the local synovial and systemic inflammatory cellular response and the structural changes in the joint is unknown. To fully understand how T-cells and monocytes/macrophages contribute towards OA, it is important to be able to quantitively identify these cells and their subsets simultaneously in synovial tissue, secondary lymphatic organs and systemically (the spleen and bone marrow). Nowadays, the different inflammatory cell subsets can be identified by a combination of cell-surface markers making multi-color flow cytometry a powerful technique in investigating these cellular processes. In this protocol, we describe detailed steps regarding the harvest of synovial tissue and secondary lymphatic organs as well as generation of single cell suspensions. Furthermore, we present both an extracellular staining assay to identify monocytes/macrophages and their subsets as well as an extra- and intra-cellular staining assay to identify T-cells and their subsets within the murine spleen, bone marrow, lymph nodes and synovial tissue. Each step of this protocol was optimized and tested, resulting in a highly reproducible assay that can be utilized for other surgical and non-surgical OA mouse models.


Assuntos
Medula Óssea/imunologia , Citometria de Fluxo/métodos , Linfonodos/imunologia , Osteoartrite/imunologia , Osteoartrite/patologia , Baço/imunologia , Membrana Sinovial/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA