Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Commun ; 15(1): 2686, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538586

RESUMO

With the development of wearable devices and hafnium-based ferroelectrics (FE), there is an increasing demand for high-performance flexible ferroelectric memories. However, developing ferroelectric memories that simultaneously exhibit good flexibility and significant performance has proven challenging. Here, we developed a high-performance flexible field-effect transistor (FeFET) device with a thermal budget of less than 400 °C by integrating Zr-doped HfO2 (HZO) and ultra-thin indium tin oxide (ITO). The proposed FeFET has a large memory window (MW) of 2.78 V, a high current on/off ratio (ION/IOFF) of over 108, and high endurance up to 2×107 cycles. In addition, the FeFETs under different bending conditions exhibit excellent neuromorphic properties. The device exhibits excellent bending reliability over 5×105 pulse cycles at a bending radius of 5 mm. The efficient integration of hafnium-based ferroelectric materials with promising ultrathin channel materials (ITO) offers unique opportunities to enable high-performance back-end-of-line (BEOL) compatible wearable FeFETs for edge intelligence applications.

2.
AJNR Am J Neuroradiol ; 45(4): 406-411, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331959

RESUMO

BACKGROUND AND PURPOSE: Predicting long-term clinical outcome in acute ischemic stroke is beneficial for prognosis, clinical trial design, resource management, and patient expectations. This study used a deep learning-based predictive model (DLPD) to predict 90-day mRS outcomes and compared its predictions with those made by physicians. MATERIALS AND METHODS: A previously developed DLPD that incorporated DWI and clinical data from the acute period was used to predict 90-day mRS outcomes in 80 consecutive patients with acute ischemic stroke from a single-center registry. We assessed the predictions of the model alongside those of 5 physicians (2 stroke neurologists and 3 neuroradiologists provided with the same imaging and clinical information). The primary analysis was the agreement between the ordinal mRS predictions of the model or physician and the ground truth using the Gwet Agreement Coefficient. We also evaluated the ability to identify unfavorable outcomes (mRS >2) using the area under the curve, sensitivity, and specificity. Noninferiority analyses were undertaken using limits of 0.1 for the Gwet Agreement Coefficient and 0.05 for the area under the curve analysis. The accuracy of prediction was also assessed using the mean absolute error for prediction, percentage of predictions ±1 categories away from the ground truth (±1 accuracy [ACC]), and percentage of exact predictions (ACC). RESULTS: To predict the specific mRS score, the DLPD yielded a Gwet Agreement Coefficient score of 0.79 (95% CI, 0.71-0.86), surpassing the physicians' score of 0.76 (95% CI, 0.67-0.84), and was noninferior to the readers (P < .001). For identifying unfavorable outcome, the model achieved an area under the curve of 0.81 (95% CI, 0.72-0.89), again noninferior to the readers' area under the curve of 0.79 (95% CI, 0.69-0.87) (P < .005). The mean absolute error, ±1ACC, and ACC were 0.89, 81%, and 36% for the DLPD. CONCLUSIONS: A deep learning method using acute clinical and imaging data for long-term functional outcome prediction in patients with acute ischemic stroke, the DLPD, was noninferior to that of clinical readers.


Assuntos
Aprendizado Profundo , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Valor Preditivo dos Testes , Acidente Vascular Cerebral/diagnóstico por imagem , Prognóstico
3.
J Neurointerv Surg ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302420

RESUMO

BACKGROUND: Outlining acutely infarcted tissue on non-contrast CT is a challenging task for which human inter-reader agreement is limited. We explored two different methods for training a supervised deep learning algorithm: one that used a segmentation defined by majority vote among experts and another that trained randomly on separate individual expert segmentations. METHODS: The data set consisted of 260 non-contrast CT studies in 233 patients with acute ischemic stroke recruited from the multicenter DEFUSE 3 (Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke 3) trial. Additional external validation was performed using 33 patients with matched stroke onset times from the University Hospital Lausanne. A benchmark U-Net was trained on the reference annotations of three experienced neuroradiologists to segment ischemic brain tissue using majority vote and random expert sampling training schemes. The median of volume, overlap, and distance segmentation metrics were determined for agreement in lesion segmentations between (1) three experts, (2) the majority model and each expert, and (3) the random model and each expert. The two sided Wilcoxon signed rank test was used to compare performances (1) to 2) and (1) to (3). We further compared volumes with the 24 hour follow-up diffusion weighted imaging (DWI, final infarct core) and correlations with clinical outcome (modified Rankin Scale (mRS) at 90 days) with the Spearman method. RESULTS: The random model outperformed the inter-expert agreement ((1) to (2)) and the majority model ((1) to (3)) (dice 0.51±0.04 vs 0.36±0.05 (P<0.0001) vs 0.45±0.05 (P<0.0001)). The random model predicted volume correlated with clinical outcome (0.19, P<0.05), whereas the median expert volume and majority model volume did not. There was no significant difference when comparing the volume correlations between random model, median expert volume, and majority model to 24 hour follow-up DWI volume (P>0.05, n=51). CONCLUSION: The random model for ischemic injury delineation on non-contrast CT surpassed the inter-expert agreement ((1) to (2)) and the performance of the majority model ((1) to (3)). We showed that the random model volumetric measures of the model were consistent with 24 hour follow-up DWI.

4.
Mater Horiz ; 11(2): 490-498, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37966103

RESUMO

Emulating the human nervous system to build next-generation computing architectures is considered a promising way to solve the von Neumann bottleneck. Transistors based on ferroelectric layers are strong contenders for the basic unit of artificial neural systems due to their advantages of high speed and low power consumption. In this work, the potential of Fe-TFTs integrating the HfLaO ferroelectric film and ultra-thin ITO channel for artificial synaptic devices is demonstrated for the first time. The Fe-TFTs can respond significantly to pulses as low as 14 ns with an energy consumption of 93.1 aJ, which is at the leading level for similar devices. In addition, Fe-TFTs exhibit essential synaptic functions and achieve a recognition rate of 93.2% for handwritten digits. Notably, a novel reconfigurable approach involving the combination of two types of electrical pulses to realize Boolean logic operations ("AND", "OR") within a single Fe-TFT has been introduced for the first time. The simulations of array-level operations further demonstrated the potential for parallel computing. These multifunctional Fe-TFTs reveal new hardware options for neuromorphic computing chips.

5.
Sci Rep ; 13(1): 16153, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752162

RESUMO

We determined if a convolutional neural network (CNN) deep learning model can accurately segment acute ischemic changes on non-contrast CT compared to neuroradiologists. Non-contrast CT (NCCT) examinations from 232 acute ischemic stroke patients who were enrolled in the DEFUSE 3 trial were included in this study. Three experienced neuroradiologists independently segmented hypodensity that reflected the ischemic core on each scan. The neuroradiologist with the most experience (expert A) served as the ground truth for deep learning model training. Two additional neuroradiologists' (experts B and C) segmentations were used for data testing. The 232 studies were randomly split into training and test sets. The training set was further randomly divided into 5 folds with training and validation sets. A 3-dimensional CNN architecture was trained and optimized to predict the segmentations of expert A from NCCT. The performance of the model was assessed using a set of volume, overlap, and distance metrics using non-inferiority thresholds of 20%, 3 ml, and 3 mm, respectively. The optimized model trained on expert A was compared to test experts B and C. We used a one-sided Wilcoxon signed-rank test to test for the non-inferiority of the model-expert compared to the inter-expert agreement. The final model performance for the ischemic core segmentation task reached a performance of 0.46 ± 0.09 Surface Dice at Tolerance 5mm and 0.47 ± 0.13 Dice when trained on expert A. Compared to the two test neuroradiologists the model-expert agreement was non-inferior to the inter-expert agreement, [Formula: see text]. The before, CNN accurately delineates the hypodense ischemic core on NCCT in acute ischemic stroke patients with an accuracy comparable to neuroradiologists.


Assuntos
Aprendizado Profundo , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico por imagem , Redes Neurais de Computação , Radiologistas , Tomografia Computadorizada por Raios X , Acidente Vascular Cerebral/diagnóstico por imagem
6.
Stroke ; 54(9): 2316-2327, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37485663

RESUMO

BACKGROUND: Predicting long-term clinical outcome based on the early acute ischemic stroke information is valuable for prognostication, resource management, clinical trials, and patient expectations. Current methods require subjective decisions about which imaging features to assess and may require time-consuming postprocessing. This study's goal was to predict ordinal 90-day modified Rankin Scale (mRS) score in acute ischemic stroke patients by fusing a Deep Learning model of diffusion-weighted imaging images and clinical information from the acute period. METHODS: A total of 640 acute ischemic stroke patients who underwent magnetic resonance imaging within 1 to 7 days poststroke and had 90-day mRS follow-up data were randomly divided into 70% (n=448) for model training, 15% (n=96) for validation, and 15% (n=96) for internal testing. Additionally, external testing on a cohort from Lausanne University Hospital (n=280) was performed to further evaluate model generalization. Accuracy for ordinal mRS, accuracy within ±1 mRS category, mean absolute prediction error, and determination of unfavorable outcome (mRS score >2) were evaluated for clinical only, imaging only, and 2 fused clinical-imaging models. RESULTS: The fused models demonstrated superior performance in predicting ordinal mRS score and unfavorable outcome in both internal and external test cohorts when compared with the clinical and imaging models. For the internal test cohort, the top fused model had the highest area under the curve of 0.92 for unfavorable outcome prediction and the lowest mean absolute error (0.96 [95% CI, 0.77-1.16]), with the highest proportion of mRS score predictions within ±1 category (79% [95% CI, 71%-88%]). On the external Lausanne University Hospital cohort, the best fused model had an area under the curve of 0.90 for unfavorable outcome prediction and outperformed other models with an mean absolute error of 0.90 (95% CI, 0.79-1.01), and the highest percentage of mRS score predictions within ±1 category (83% [95% CI, 78%-87%]). CONCLUSIONS: A Deep Learning-based imaging model fused with clinical variables can be used to predict 90-day stroke outcome with reduced subjectivity and user burden.


Assuntos
Aprendizado Profundo , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Prognóstico , Imageamento por Ressonância Magnética
7.
J Magn Reson Imaging ; 57(5): 1533-1540, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37021577

RESUMO

BACKGROUND: Automated segmentation of the placenta by MRI in early pregnancy may help predict normal and aberrant placenta function, which could improve the efficiency of placental assessment and the prediction of pregnancy outcomes. An automated segmentation method that works at one gestational age may not transfer effectively to other gestational ages. PURPOSE: To evaluate a spatial attentive deep learning method (SADL) for automated placental segmentation on longitudinal placental MRI scans. STUDY TYPE: Prospective, single-center. SUBJECTS: A total of 154 pregnant women who underwent MRI scans at both 14-18 weeks of gestation and at 19-24 weeks of gestation, divided into training (N = 108), validation (N = 15), and independent testing datasets (N = 31). FIELD STRENGTH/SEQUENCE: A 3 T, T2-weighted half Fourier single-shot turbo spin-echo (T2-HASTE) sequence. ASSESSMENT: The reference standard of placental segmentation was manual delineation on T2-HASTE by a third-year neonatology clinical fellow (B.L.) under the supervision of an experienced maternal-fetal medicine specialist (C.J. with 20 years of experience) and an MRI scientist (K.S. with 19 years of experience). STATISTICAL TESTS: The three-dimensional Dice similarity coefficient (DSC) was used to measure the automated segmentation performance compared to the manual placental segmentation. A paired t-test was used to compare the DSCs between SADL and U-Net methods. A Bland-Altman plot was used to analyze the agreement between manual and automated placental volume measurements. A P value < 0.05 was considered statistically significant. RESULTS: In the testing dataset, SADL achieved average DSCs of 0.83 ± 0.06 and 0.84 ± 0.05 in the first and second MRI, which were significantly higher than those achieved by U-Net (0.77 ± 0.08 and 0.76 ± 0.10, respectively). A total of 6 out of 62 MRI scans (9.6%) had volume measurement differences between the SADL-based automated and manual volume measurements that were out of 95% limits of agreement. DATA CONCLUSIONS: SADL can automatically detect and segment the placenta with high performance in MRI at two different gestational ages. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Aprendizado Profundo , Humanos , Feminino , Gravidez , Processamento de Imagem Assistida por Computador/métodos , Placenta , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos
8.
Nano Lett ; 23(10): 4675-4682, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-36913490

RESUMO

Hafnium oxide (HfO2)-based ferroelectric tunnel junctions (FTJs) have been extensively evaluated for high-speed and low-power memory applications. Herein, we investigated the influence of Al content in HfAlO thin films on the ferroelectric characteristics of HfAlO-based FTJs. Among HfAlO devices with different Hf/Al ratios (20:1, 34:1, and 50:1), the HfAlO device with Hf/Al ratio of 34:1 exhibited the highest remanent polarization and excellent memory characteristics and, thereby, the best ferroelectricity among the investigated devices. Furthermore, first-principal analyses verified that HfAlO thin films with Hf/Al ratio of 34:1 promoted the formation of the orthorhombic phase against the paraelectric phase as well as alumina impurities and, thus, enhanced the ferroelectricity of the device, providing theoretical support for supporting experimental results. The findings of this study provide insights for developing HfAlO-based FTJs for next-generation in-memory computing applications.

9.
Magn Reson Imaging ; 95: 70-79, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270417

RESUMO

PURPOSE: Stack-of-radial MRI allows free-breathing abdominal scans, however, it requires relatively long acquisition time. Undersampling reduces scan time but can cause streaking artifacts and degrade image quality. This study developed deep learning networks with adversarial loss and evaluated the performance of reducing streaking artifacts and preserving perceptual image sharpness. METHODS: A 3D generative adversarial network (GAN) was developed for reducing streaking artifacts in stack-of-radial abdominal scans. Training and validation datasets were self-gated to 5 respiratory states to reduce motion artifacts and to effectively augment the data. The network used a combination of three loss functions to constrain the anatomy and preserve image quality: adversarial loss, mean-squared-error loss and structural similarity index loss. The performance of the network was investigated for 3-5 times undersampled data from 2 institutions. The performance of the GAN for 5 times accelerated images was compared with a 3D U-Net and evaluated using quantitative NMSE, SSIM and region of interest (ROI) measurements as well as qualitative scores of radiologists. RESULTS: The 3D GAN showed similar NMSE (0.0657 vs. 0.0559, p = 0.5217) and significantly higher SSIM (0.841 vs. 0.798, p < 0.0001) compared to U-Net. ROI analysis showed GAN removed streaks in both the background air and the tissue and was not significantly different from the reference mean and variations. Radiologists' scores showed GAN had a significant improvement of 1.6 point (p = 0.004) on a 4-point scale in streaking score while no significant difference in sharpness score compared to the input. CONCLUSION: 3D GAN removes streaking artifacts and preserves perceptual image details.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Respiração , Movimento (Física) , Processamento de Imagem Assistida por Computador/métodos
10.
Nat Commun ; 13(1): 7432, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460675

RESUMO

Neuromorphic computing memristors are attractive to construct low-power- consumption electronic textiles due to the intrinsic interwoven architecture and promising applications in wearable electronics. Developing reconfigurable fiber-based memristors is an efficient method to realize electronic textiles that capable of neuromorphic computing function. However, the previously reported artificial synapse and neuron need different materials and configurations, making it difficult to realize multiple functions in a single device. Herein, a textile memristor network of Ag/MoS2/HfAlOx/carbon nanotube with reconfigurable characteristics was reported, which can achieve both nonvolatile synaptic plasticity and volatile neuron functions. In addition, a single reconfigurable memristor can realize integrate-and-fire function, exhibiting significant advantages in reducing the complexity of neuron circuits. The firing energy consumption of fiber-based memristive neuron is 1.9 fJ/spike (femtojoule-level), which is at least three orders of magnitude lower than that of the reported biological and artificial neuron (picojoule-level). The ultralow energy consumption makes it possible to create an electronic neural network that reduces the energy consumption compared to human brain. By integrating the reconfigurable synapse, neuron and heating resistor, a smart textile system is successfully constructed for warm fabric application, providing a unique functional reconfiguration pathway toward the next-generation in-memory computing textile system.


Assuntos
Eletrônica , Têxteis , Humanos , Sinapses , Plasticidade Neuronal , Neurônios , Fibras na Dieta
11.
Eur Radiol ; 32(8): 5688-5699, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35238971

RESUMO

OBJECTIVE: To identify which patient with prostate cancer (PCa) could safely avoid extended pelvic lymph node dissection (ePLND) by predicting lymph node invasion (LNI), via a radiomics-based machine learning approach. METHODS: An integrative radiomics model (IRM) was proposed to predict LNI, confirmed by the histopathologic examination, integrating radiomics features, extracted from prostatic index lesion regions on MRI images, and clinical features via SVM. The study cohort comprised 244 PCa patients with MRI and followed by radical prostatectomy (RP) and ePLND within 6 months between 2010 and 2019. The proposed IRM was trained in training/validation set and evaluated in an internal independent testing set. The model's performance was measured by area under the curve (AUC), sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). AUCs were compared via Delong test with 95% confidence interval (CI), and the rest measurements were compared via chi-squared test or Fisher's exact test. RESULTS: Overall, 17 (10.6%) and 14 (16.7%) patients with LNI were included in training/validation set and testing set, respectively. Shape and first-order radiomics features showed usefulness in building the IRM. The proposed IRM achieved an AUC of 0.915 (95% CI: 0.846-0.984) in the testing set, superior to pre-existing nomograms whose AUCs were from 0.698 to 0.724 (p < 0.05). CONCLUSION: The proposed IRM could be potentially feasible to predict the risk of having LNI for patients with PCa. With the improved predictability, it could be utilized to assess which patients with PCa could safely avoid ePLND, thus reduce the number of unnecessary ePLND. KEY POINTS: • The combination of MRI-based radiomics features with clinical information improved the prediction of lymph node invasion, compared with the model using only radiomics features or clinical features. • With improved prediction performance on predicting lymph node invasion, the number of extended pelvic lymph node dissection (ePLND) could be reduced by the proposed integrative radiomics model (IRM), compared with the existing nomograms.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Humanos , Excisão de Linfonodo/métodos , Linfonodos/patologia , Metástase Linfática/patologia , Masculino , Prostatectomia/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos
12.
J Magn Reson Imaging ; 55(1): 100-110, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34160114

RESUMO

BACKGROUND: Multiparametric MRI (mpMRI) is commonly recommended as a triage test prior to any prostate biopsy. However, there exists limited consensus on which patients with a negative prostate mpMRI could avoid prostate biopsy. PURPOSE: To identify which patient could safely avoid prostate biopsy when the prostate mpMRI is negative, via a radiomics-based machine learning approach. STUDY TYPE: Retrospective. SUBJECTS: Three hundred thirty patients with negative prostate 3T mpMRI between January 2016 and December 2018 were included. FIELD STRENGTH/SEQUENCE: A 3.0 T/T2-weighted turbo spin echo (TSE) imaging (T2 WI) and diffusion-weighted imaging (DWI). ASSESSMENT: The integrative machine learning (iML) model was trained to predict negative prostate biopsy results, utilizing both radiomics and clinical features. The final study cohort comprised 330 consecutive patients with negative mpMRI (PI-RADS < 3) who underwent systematic transrectal ultrasound-guided (TRUS) or MR-ultrasound fusion (MRUS) biopsy within 6 months. A secondary analysis of biopsy naïve subcohort (n = 227) was also conducted. STATISTICAL TESTS: The Mann-Whitney U test and Chi-Squared test were utilized to evaluate the significance of difference of clinical features between prostate biopsy positive and negative groups. The model performance was validated using leave-one-out cross-validation (LOOCV) and measured by AUC, sensitivity, specificity, and negative predictive value (NPV). RESULTS: Overall, 306/330 (NPV 92.7%) of the final study cohort patients had negative biopsies, and 207/227 (NPV 91.2%) of the biopsy naïve subcohort patients had negative biopsies. Our iML model achieved NPVs of 98.3% and 98.0% for the study cohort and subcohort, respectively, superior to prostate-specific antigen density (PSAD)-based risk assessment with NPVs of 94.9% and 93.9%, respectively. DATA CONCLUSION: The proposed iML model achieved high performance in predicting negative prostate biopsy results for patients with negative mpMRI. With improved NPVs, the proposed model can be used to stratify patients who in whom we might obviate biopsies, thus reducing the number of unnecessary biopsies. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Biópsia , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Estudos Retrospectivos
13.
Diagnostics (Basel) ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34679484

RESUMO

The current standardized scheme for interpreting MRI requires a high level of expertise and exhibits a significant degree of inter-reader and intra-reader variability. An automated prostate cancer (PCa) classification can improve the ability of MRI to assess the spectrum of PCa. The purpose of the study was to evaluate the performance of a texture-based deep learning model (Textured-DL) for differentiating between clinically significant PCa (csPCa) and non-csPCa and to compare the Textured-DL with Prostate Imaging Reporting and Data System (PI-RADS)-based classification (PI-RADS-CLA), where a threshold of PI-RADS ≥ 4, representing highly suspicious lesions for csPCa, was applied. The study cohort included 402 patients (60% (n = 239) of patients for training, 10% (n = 42) for validation, and 30% (n = 121) for testing) with 3T multiparametric MRI matched with whole-mount histopathology after radical prostatectomy. For a given suspicious prostate lesion, the volumetric patches of T2-Weighted MRI and apparent diffusion coefficient images were cropped and used as the input to Textured-DL, consisting of a 3D gray-level co-occurrence matrix extractor and a CNN. PI-RADS-CLA by an expert reader served as a baseline to compare classification performance with Textured-DL in differentiating csPCa from non-csPCa. Sensitivity and specificity comparisons were performed using Mcnemar's test. Bootstrapping with 1000 samples was performed to estimate the 95% confidence interval (CI) for AUC. CIs of sensitivity and specificity were calculated by the Wald method. The Textured-DL model achieved an AUC of 0.85 (CI [0.79, 0.91]), which was significantly higher than the PI-RADS-CLA (AUC of 0.73 (CI [0.65, 0.80]); p < 0.05) for PCa classification, and the specificity was significantly different between Textured-DL and PI-RADS-CLA (0.70 (CI [0.59, 0.82]) vs. 0.47 (CI [0.35, 0.59]); p < 0.05). In sub-analyses, Textured-DL demonstrated significantly higher specificities in the peripheral zone (PZ) and solitary tumor lesions compared to the PI-RADS-CLA (0.78 (CI [0.66, 0.90]) vs. 0.42 (CI [0.28, 0.57]); 0.75 (CI [0.54, 0.96]) vs. 0.38 [0.14, 0.61]; all p values < 0.05). Moreover, Textured-DL demonstrated a high negative predictive value of 92% while maintaining a high positive predictive value of 58% among the lesions with a PI-RADS score of 3. In conclusion, the Textured-DL model was superior to the PI-RADS-CLA in the classification of PCa. In addition, Textured-DL demonstrated superior performance in the specificities for the peripheral zone and solitary tumors compared with PI-RADS-based risk assessment.

14.
Comput Biol Med ; 128: 104160, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310694

RESUMO

Prostate cancer is one of the most common deadly diseases in men worldwide, which is seriously affecting people's life and health. Reliable and automated segmentation of the prostate gland in MRI data is exceptionally critical for diagnosis and treatment planning of prostate cancer. Although many automated segmentation methods have emerged, including deep learning based approaches, segmentation performance is still poor due to the large variability of image appearance, anisotropic spatial resolution, and imaging interference. This study proposes an automated prostate MRI data segmentation approach using bicubic interpolation with improved 3D V-Net (dubbed 3D PBV-Net). Considering the low-frequency components in the prostate gland, the bicubic interpolation is applied to preprocess the MRI data. On this basis, a 3D PBV-Net is developed to perform prostate MRI data segmentation. To illustrate the effectiveness of our approach, we evaluate the proposed 3D PBV-Net on two clinical prostate MRI data datasets, i.e., PROMISE 12 and TPHOH, with the manual delineations available as the ground truth. Our approach generates promising segmentation results, which have achieved 97.65% and 98.29% of average accuracy, 0.9613 and 0.9765 of Dice metric, 3.120 mm and 0.9382 mm of Hausdorff distance, and average boundary distance of 1.708, 0.7950 on PROMISE 12 and TPHOH datasets, respectively. Our method has effectively improved the accuracy of automated segmentation of the prostate MRI data and is promising to meet the accuracy requirements for telehealth applications.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias da Próstata , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Neoplasias da Próstata/diagnóstico por imagem
15.
Front Oncol ; 11: 801876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993152

RESUMO

Whole-prostate gland (WPG) segmentation plays a significant role in prostate volume measurement, treatment, and biopsy planning. This study evaluated a previously developed automatic WPG segmentation, deep attentive neural network (DANN), on a large, continuous patient cohort to test its feasibility in a clinical setting. With IRB approval and HIPAA compliance, the study cohort included 3,698 3T MRI scans acquired between 2016 and 2020. In total, 335 MRI scans were used to train the model, and 3,210 and 100 were used to conduct the qualitative and quantitative evaluation of the model. In addition, the DANN-enabled prostate volume estimation was evaluated by using 50 MRI scans in comparison with manual prostate volume estimation. For qualitative evaluation, visual grading was used to evaluate the performance of WPG segmentation by two abdominal radiologists, and DANN demonstrated either acceptable or excellent performance in over 96% of the testing cohort on the WPG or each prostate sub-portion (apex, midgland, or base). Two radiologists reached a substantial agreement on WPG and midgland segmentation (κ = 0.75 and 0.63) and moderate agreement on apex and base segmentation (κ = 0.56 and 0.60). For quantitative evaluation, DANN demonstrated a dice similarity coefficient of 0.93 ± 0.02, significantly higher than other baseline methods, such as DeepLab v3+ and UNet (both p values < 0.05). For the volume measurement, 96% of the evaluation cohort achieved differences between the DANN-enabled and manual volume measurement within 95% limits of agreement. In conclusion, the study showed that the DANN achieved sufficient and consistent WPG segmentation on a large, continuous study cohort, demonstrating its great potential to serve as a tool to measure prostate volume.

16.
IEEE Access ; 8: 151817-151828, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33564563

RESUMO

Automatic segmentation of prostatic zones on multiparametric MRI (mpMRI) can improve the diagnostic workflow of prostate cancer. We designed a spatial attentive Bayesian deep learning network for the automatic segmentation of the peripheral zone (PZ) and transition zone (TZ) of the prostate with uncertainty estimation. The proposed method was evaluated by using internal and external independent testing datasets, and overall uncertainties of the proposed model were calculated at different prostate locations (apex, middle, and base). The study cohort included 351 MRI scans, of which 304 scans were retrieved from a de-identified publicly available datasets (PROSTATEX) and 47 scans were extracted from a large U.S. tertiary referral center (external testing dataset; ETD)). All the PZ and TZ contours were drawn by research fellows under the supervision of expert genitourinary radiologists. Within the PROSTATEX dataset, 259 and 45 patients (internal testing dataset; ITD) were used to develop and validate the model. Then, the model was tested independently using the ETD only. The segmentation performance was evaluated using the Dice Similarity Coefficient (DSC). For PZ and TZ segmentation, the proposed method achieved mean DSCs of 0.80±0.05 and 0.89±0.04 on ITD, as well as 0.79±0.06 and 0.87±0.07 on ETD. For both PZ and TZ, there was no significant difference between ITD and ETD for the proposed method. This DL-based method enabled the accuracy of the PZ and TZ segmentation, which outperformed the state-of-art methods (Deeplab V3+, Attention U-Net, R2U-Net, USE-Net and U-Net). We observed that segmentation uncertainty peaked at the junction between PZ, TZ and AFS. Also, the overall uncertainties were highly consistent with the actual model performance between PZ and TZ at three clinically relevant locations of the prostate.

17.
ACS Sens ; 3(11): 2446-2454, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30335972

RESUMO

It is urgent to develop a rapid, reliable, and in-site determination method to detect or monitor trace amounts of toxic substances in the field. Here, we report an alternative surface-enhanced Raman scattering (SERS) method coupled with a portable Raman device on a plasmonic three-dimension (3D) hot spot sensing surface. Plasmonic Ag nanoparticles (AgNPs) were uniformly deposited on 3D TiO2 nanopore arrays as a sensitive SERS substrate, and further coated with graphene oxide (GO). We demonstrate the plasmon-induced SERS enhancement (5.8-fold) and the improvement of catalytic activity by incorporation of plasmonic AgNPs into the 3D TiO2 nanopore arrays. The modification of GO on the TiO2-Ag nanopore array further increases by a 6.2-fold Raman enhancement compared to TiO2-Ag while maintaining good uniformity (RSD < 10%). The optimized TiO2-Ag-GO substrate shows powerful quantitative detection potential for drug residues in fish scales via a simple scrubbing method, and the limit of detection (LOD) for crystal violet (CV) was 10-8 M. The SERS substrate also showed detection practicability of pesticide residues in banana peel with an LOD of 10-7 M. In addition, our TiO2-Ag-GO substrate exhibits excellent SERS self-monitoring performance for catalytic reduction of multiple organics in NaBH4 solution, and the substrate shows good recyclability of 6 cycles. Such a 3D TiO2-Ag-GO substrate is a promising SERS substrate with good sensitivity, uniformity, and reusability, and may be utilized for further miniaturization for point of analytical applications.


Assuntos
Resíduos de Drogas/análise , Nanopartículas Metálicas/química , Nanoporos , Resíduos de Praguicidas/análise , Titânio/química , Escamas de Animais/química , Animais , Anti-Infecciosos Locais/análise , Peixes , Fungicidas Industriais/análise , Violeta Genciana/análise , Grafite/química , Limite de Detecção , Musa/química , Reprodutibilidade dos Testes , Corantes de Rosanilina/análise , Prata/química , Análise Espectral Raman/métodos , Tiram/análise
18.
J Phys Condens Matter ; 30(15): 155402, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29521281

RESUMO

Attractive Bose-Einstein condensates of dilute alkali gases are unstable against collapse in two- and three-dimensional free space. Nevertheless, we demonstrate that the spin-orbit coupling of the two-component condensates counteracts the tendency of collapse and makes the system preferable to an extended spatial distribution in the three-dimensional case. Furthermore, stable topological objects can be formed in the condensates, which are shown to be the lowest energy states. Two configurations of the density profiles, called three-dimensional skyrmion and three-dimensional dimeron, respectively, are identified depending on the strength of the spin-orbit coupling.

19.
Int J Comput Assist Radiol Surg ; 12(3): 379-388, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27854032

RESUMO

PURPOSE: The human colon has complex geometric structures because of its haustral folds, which are thin flat protrusions on the colon wall. The haustral loop is the curve (approximately triangular in shape) that encircles the highly convex region of the haustral fold, and is regarded as the natural landmark of the colon, intersecting the longitude of the colon in the middle. Haustral loop extraction can assist in reducing the structural complexity of the colon, and the loops can also serve as anatomic markers for computed tomographic colonography (CTC). Moreover, haustral loop sectioning of the colon can help with the performance of precise prone-supine registration. METHODS: We propose an accurate approach of extracting haustral loops for CT virtual colonoscopy based on geodesics. First, the longitudinal geodesic (LG) connecting the start and end points is tracked by the geodesic method and the colon is cut along the LG. Second, key points are extracted from the LG, after which paired points that are used for seeking the potential haustral loops are calculated according to the key points. Next, for each paired point, the shortest distance (geodesic line) between the paired points twice is calculated, namely one on the original surface and the other on the cut surface. Then, the two geodesics are combined to form a potential haustral loop. Finally, erroneous and nonstandard potential loops are removed. RESULTS: To evaluate the haustral loop extraction algorithm, we first utilized the algorithm to extract the haustral loops. Then, we let the clinicians determine whether the haustral loops were correct and then identify the missing haustral loops. The extraction algorithm successfully detected 91.87% of all of the haustral loops with a very low false positive rate. CONCLUSIONS: We believe that haustral loop extraction may benefit many post-procedures in CTC, such as supine-prone registration, computer-aided diagnosis, and taenia coli extraction.


Assuntos
Algoritmos , Colo/diagnóstico por imagem , Neoplasias do Colo/diagnóstico por imagem , Pólipos do Colo/diagnóstico por imagem , Colonografia Tomográfica Computadorizada/métodos , Humanos , Decúbito Ventral , Reprodutibilidade dos Testes
20.
Zhongguo Gu Shang ; 26(3): 201-4, 2013 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-23795436

RESUMO

OBJECTIVE: To explore the postoperative complication and its preventive measure of cervical open-door expansive laminoplasty with lateral mass screw fixation in treating cervical canal stenosis. METHODS: From February 2008 to July 2011, 33 patients with cervical canal stenosis underwent cervical open-door expansive laminoplasty with lateral mass screw fixation. JOA score was used to evaluate clinical effects before and after operation. Of them, complications occurred in 6 cases, male in 2 cases and female in 4 cases. The reason of complications were analyzed. RESULTS: All the patients were followed up from 6 months to 2 years with an average of 10.3 months. The improvement rate of JOA was 78.8% and incidence rate of complication was 18.2% (6 cases). There were 2 cases of axiality symptoms, 1 case of lateral mass screw pulled-out, 2 cases of cerebrospinal fluid leakage with wound dehiscence, 1 case of nerve root parlysis. These complications correlated with operative design, manipulation,improved degree of cervical curvature,postoperative management and cooperation of patient. CONCLUSION: As an effective treatment, cervical open-door expansive laminoplasty with lateral mass screw fixation has lower incidence of axiality pain. Preoperative examination ,postoperative management ,meticulous surgical skill are very important to avoid complications.


Assuntos
Parafusos Ósseos , Vértebras Cervicais/cirurgia , Laminectomia/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Estenose Espinal/cirurgia , Rinorreia de Líquido Cefalorraquidiano/etiologia , Feminino , Humanos , Laminectomia/métodos , Masculino , Complicações Pós-Operatórias/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA