Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(50): 56541-56548, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33283518

RESUMO

Most previous attempts on achieving electric-field manipulation of ferromagnetism in complex oxides, such as La0.66Sr0.33MnO3 (LSMO), are based on electrostatically induced charge carrier changes through high-k dielectrics or ferroelectrics. Here, the use of a ferroelectric copolymer, polyvinylidene fluoride with trifluoroethylene [P(VDF-TrFE)], as a gate dielectric to successfully modulate the ferromagnetism of the LSMO thin film in a field-effect device geometry is demonstrated. Specifically, through the application of low-voltage pulse chains inadequate to switch the electric dipoles of the copolymer, enhanced tunability of the oxide magnetic response is obtained, compared to that induced by ferroelectric polarization. Such observations have been attributed to electric field-induced oxygen vacancy accumulation/depletion in the LSMO layer upon the application of pulse chains, which is supported by surface-sensitive-characterization techniques, including X-ray photoelectron spectroscopy and X-ray magnetic circular dichroism. These techniques not only unveil the electrochemical nature of the mechanism but also establish a direct correlation between the oxygen vacancies created and subsequent changes to the valence states of Mn ions in LSMO. These demonstrations based on the pulsing strategy can be a viable route equally applicable to other functional oxides for the construction of electric field-controlled magnetic devices.

2.
Adv Mater ; 26(41): 7091-5, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25213017

RESUMO

The deterministic rotation of magnetization by electric fields is a challenging issue for future low-power spintronics. In a Co/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 multiferroic heterostructure, piezostrain-mediated, macroscopically maneuverable, and non-volatile magnetization reversal without an applied magnetic field is demonstrated. This, combined with the presented phase-field simulations, is of practical relevance for designing prototype devices.

3.
Sci Rep ; 3: 1245, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409236

RESUMO

Magnetoelectric multiferroics are materials that have coupled magnetic and electric dipole orders, which can bring novel physical phenomena and offer possibilities for new device functions. In this report, single-crystalline Bi(4.2)K(0.8)Fe(2)O(9+δ) nanobelts which are isostructural with the high-temperature superconductor Bi(2)Sr(2)CaCu(2)O(8+δ) are successfully grown by a hydrothermal method. The regular stacking of the rock salt slabs and the BiFeO(3)-like perovskite blocks along the c axis of the crystal makes the Bi(4.2)K(0.8)Fe(2)O(9+δ) nanobelts have a natural magnetoelectric-dielectric superlattice structure. The most striking result is that the bulk material made of the Bi(4.2)K(0.8)Fe(2)O(9+δ) nanobelts is of multiferroicity near room temperature accompanied with a structure anomaly. When an external magnetic field is applied, the electric polarization is greatly suppressed, and correspondingly, a large negative magnetocapacitance coefficient is observed around 270 K possibly due to the magnetoelectric coupling effect. Our result provides contributions to the development of single phase multiferroics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA