Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2619-2628, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37897268

RESUMO

Determining the differences of water use characteristics of a tree species with different origins (natural forests and introduced plantations) is significantly important for forest sustainable management. Pinus sylvestris var. mongolica is an important tree species of afforestation in the 'Three North' project in China. In this study, with Pinus sylvestris var. mongolica from two origins, we monitored the sap flow velocity of sapwood (Js) of trees by thermal dissipation sap flow probes, and analyzed the relationship between water transportation and the environmental factors during the growing season. The results showed that under the typical sunny day, daily sap flow velocity (Js-daily) of trees from plantations was significantly higher than that from natural forests. The mean value of Js-daily was 132.98 and 114.86 cm·d-1 for the two origins, respectively. Trees from plantations showed higher water transportation potential than natural forests. Vapor pressure deficit (VPD) mainly showed the driving effect on the water use process of trees from natural forests. In the plantations, there was an obvious threshold effect, and the inflection point of VPD was about 1.91 kPa, with the boundary function of Js-hour increased to the maximum of 17.88 cm·h-1. Atmospheric driven transpiration potential (Js-hour/VPD) of P. sylvestris var. mongolica trees with two origins decreased with the aggravation of soil drought, but sensitivity to drought was higher in the plantations than in the natural forests, suggesting the strong ability of Pinus sylvestris var. mongolica to regulate water use process.


Assuntos
Pinus sylvestris , Pinus , Pinus sylvestris/fisiologia , Água/análise , Florestas , Árvores , Solo , China
2.
Curr Issues Mol Biol ; 44(10): 4822-4837, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36286043

RESUMO

Atherosclerosis is a major risk factor for type 2 diabetes (T2D) mortality. We aim to investigate the changes in miR-21, miR-122, miR-33a and miR-3064-5p in circulation and the liver of ApoE-/- mice with streptozocin (STZ)-induced T2D. Twenty 5-week-old male ApoE-/- mice were randomly assigned to the control (n = 10) and T2D group (n = 10) and intraperitoneally injected with a citrate buffer and streptozotocin (STZ) (40 mg/kg BW) once a day for three consecutive days. The successfully STZ-induced T2D mice (n = 5) and control mice (n = 5) were then fed with a high-fat diet (HFD) for 34 weeks. Compared to the control mice, ApoE-/- mice with STZ-induced T2D had slower (p < 0.05) growth, increased (p < 0.05) total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), decreased (p < 0.05) high-density lipoprotein cholesterol (HDL-C) in serum, reduced (p < 0.05) TC and sterol regulatory element-binding protein-2 (Srebp-2), elevated (p < 0.05) ATP-binding-cassette-transporter-A1 (Abca1) in the liver, aggravated (p < 0.05) atherosclerotic lesions in the aorta, downregulated (p < 0.05) miR-21 and miR-33a, and upregulated (p < 0.05) miR-122 and miR-3064-5p in serum and the liver. In addition, the aortic lesions showed a positive correlation with miR-122 (r = 1.000, p = 0.001) and a negative correlation with miR-21 (r = −1.000, p = 0.001) in ApoE-/- mice with T2D. In conclusion, T2D-accelerated atherosclerosis correlates with a reduction in miR-21 and miR-33a and an elevation in miR-122 and miR-3064-5p in circulation and the liver of ApoE-/- mice.

3.
Nat Prod Res ; : 1-7, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175160

RESUMO

Two new thymol derivatives (1-2) were isolated from the aerial parts of Eupatorium fortunei. Their structures were elucidated on the basis of comprehensive spectroscopic data analysis as 8,9-dehydrothymol-3-O-ß-glucoside (1), and 9-(acetyloxy)thymol-3-yl (3-methylbut-2-enoate) (2). All isolates were evaluated for cytotoxic activities with IC50 values greater than 50 µM in vitro against MCF-7, HeLa, A549, and Hep G-2 cancer cells.

4.
J Phys Condens Matter ; 33(29)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33984851

RESUMO

In this work, we investigate the quantum phase transition in a non-HermitianXYspin chain. The phase diagram shows that the critical points of Ising phase transition expand into a critical transition zone after introducing a non-Hermitian effect. By analyzing the non-Hermitian gap and long-range correlation function, one can distinguish different phases by means of different gap features and decay properties of correlation function, a tricky problem in traditionalXYmodel. Furthermore, the results reveal the relationship among different regions of the phase diagram, non-Hermitian energy gap and long-range correlation function.

5.
J Geriatr Cardiol ; 18(4): 261-270, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33995505

RESUMO

BACKGROUND: The efficacy and safety of proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitors were confirmed by several clinical trials, but its effectiveness in routine clinical practice in China has not been evaluated. This study aims to describe the real world effectiveness of PCSK-9 inhibitors combined with statins compared with statins-based therapy among patients with very high risk of atherosclerotic cardiovascular disease (ASCVD). METHODS: This is a multi-center observational study, enrolled patients from 32 hospitals who underwent percutaneous coronary intervention (PCI) from January to June in 2019. There are 453 patients treated with PCSK-9 inhibitors combined with statins in PCSK-9 inhibitor group and 2,610 patients treated with statins-based lipid lowering therapies in statins-based group. The lipid control rate and incidence of major adverse cardiovascular events (MACE) over six months were compared between two groups. A propensity score-matched (PSM) analysis was used to balance two groups on confounding factors. Survival analysis using Kaplan-Meier methods was applied for MACE. RESULTS: In a total of 3,063 patients, 89.91% of patients had received moderate or high-intensity statins-based therapy before PCI, but only 9.47% of patients had low-density lipoprotein cholesterol (LDL-C) levels below 1.4 mmol/L at baseline. In the PSM selected patients, LDL-C level was reduced by 42.57% in PCSK-9 inhibitor group and 30.81% (P < 0.001) in statins-based group after six months. The proportion of LDL-C ≤ 1.0 mmol/L increased from 5.29% to 29.26% in PCSK-9 inhibitor group and 0.23% to 6.11% in statins-based group, and the proportion of LDL-C ≤ 1.4 mmol/L increased from 10.36% to 47.69% in PCSK-9 inhibitor group and 2.99% to 18.43% in statins-based group ( P < 0.001 for both). There was no significant difference between PCSK-9 inhibitor and statins-based treatment in reducing the risk of MACE (hazard ratio = 2.52, 95% CI: 0.49-12.97, P = 0.250). CONCLUSIONS: In the real world, PCSK-9 inhibitors combined with statins could significantly reduce LDL-C levels among patients with very high risk of ASCVD in China. The long-term clinical benefits for patients received PCSK-9 inhibitor to reduce the risk of MACE is still unclear and requires further study.

6.
Opt Express ; 29(7): 9942-9959, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820157

RESUMO

We propose a scheme for converting a microwave (mw) single photon in a mw cavity to a flying optical photon. The conversion is realized by using a flying circular Rydberg atom, which plays a role of the "data bus" as an excellent memory to connect the mw and optical cavities. To link the energy levels of atom in optical domain and mw domain, we use fast decircularization method and three-photon Raman transition method. Thank to these low loss processes and the super long lifetime of circular Rydberg states, this scheme can efficiently convert single mw photons into the optical domain. Based on existing experiments and data, the conversion efficiency is simulated as 60%. The theoretical limit of the conversion efficiency is about 87%.

7.
Huan Jing Ke Xue ; 42(2): 883-890, 2021 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742883

RESUMO

To improve the removal efficiency of dissolved organic matter in wastewater treatment plant (WWTP) effluent, electro-hybrid ozonation-coagulation (E-HOC) is proposed and the treatment characteristics and removal mechanism for WWTP effluent and ibuprofen (IBP) are investigated. The E-HOC process has a better removal effect on dissolved organic matter in WWTP effluent, achieving 46.4%, 20.0%, 19.4%, 36.1%, and 49.7% higher removal than EC, ozonation, pre-ozonation-EC, electrocoagulation-ozonation, and chemical coagulation, respectively. To determine the mechanism of the E-HOC process, quenching experiments and electron paramagnetic resonance (EPR) were conducted, which confirmed that metal coagulants can be used as a catalyst to effectively increase the generation of the hydroxyl radical (·OH). Synergistic effects between ozone and the coagulants (SOC) were also found to be involved. Fourier-transform infrared spectroscopy (FT-IR) illustrated that the surface hydroxyl groups of the coagulant (hydrolyzed species produced by Al anode electrolysis) were the active sites for the generation of·OH in the SOC reaction. Based on a kinetics analysis of organic matter removal in the E-HOC system, SOC effects and ozonation played dominant roles in the E-HOC process. Additionally, the SOC created a new pathway for·OH formation.

8.
Front Plant Sci ; 11: 374, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411151

RESUMO

Light intensity (I) is the most dynamic and significant environmental variable affecting photosynthesis (A n), stomatal conductance (g s), transpiration (T r), and water-use efficiency (WUE). Currently, studies characterizing leaf-scale WUE-I responses are rare and key questions have not been answered. In particular, (1) What shape does the response function take? (2) Are there maximum intrinsic (WUEi; WUEi-max) and instantaneous WUE (WUEinst; WUEinst-max) at the corresponding saturation irradiances (I i-sat and I inst-sat)? This study developed WUEi-I and WUEinst-I models sharing the same non-asymptotic function with previously published A n-I and g s-I models. Observation-modeling intercomparison was conducted for field-grown plants of soybean (C3) and grain amaranth (C4) to assess the robustness of our models versus the non-rectangular hyperbola models (NH models). Both types of models can reproduce WUE-I curves well over light-limited range. However, at light-saturated range, NH models overestimated WUEi-max and WUEinst-max and cannot return I i-sat and I inst-sat due to its asymptotic function. Moreover, NH models cannot describe the down-regulation of WUE induced by high light, on which our models described well. The results showed that WUEi and WUEinst increased rapidly within low range of I, driven by uncoupled photosynthesis and stomatal responsiveness. Initial response rapidity of WUEi was higher than WUEinst because the greatest increase of A n and T r occurred at low g s. C4 species showed higher WUEi-max and WUEinst-max than C3 species-at similar I i-sat and I inst-sat. Our intercomparison highlighted larger discrepancy between WUEi-I and WUEinst-I responses in C3 than C4 species, quantitatively characterizing an important advantage of C4 photosynthetic pathway-higher A n gain but lower T r cost per unit of g s change. Our models can accurately return the wealth of key quantities defining species-specific WUE-I responses-besides A n-I and g s-I responses. The key advantage is its robustness in characterizing these entangled responses over a wide I range from light-limited to light-inhibitory light intensities, through adopting the same analytical framework and the explicit and consistent definitions on these responses. Our models are of significance for physiologists and modelers-and also for breeders screening for genotypes concurrently achieving maximized photosynthesis and optimized WUE.

9.
J Plant Physiol ; 240: 153002, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31254740

RESUMO

Suppression of photorespiration by low O2 concentrations (Method 1) and simultaneous measurements of gas exchange and chlorophyll fluorescence (Method 2) are often used to estimate leaf photorespiration rate (Rp) of C3 plants. However, it is largely unknown whether Method 1 and Method 2 can be used equivalently in estimating Rp. Using a field experiment on two wheat cultivars (T. aestivum JM22 and T. aestivum Z39-118) whose leaf gas exchange and chlorophyll fluorescence at low and normal O2 concentrations (2% versus 21% O2) were simultaneously measured across a wide range of light intensities (I), this study assessed the impacts of the two measures on Rp and its response under changing irradiance conditions. All the above quantities increased with the increasing I until reaching the cultivar-specific maximum values and the corresponding saturation light intensities. However, there were significant differences between Rp estimated by Method 1 and Method 2 at the I range from 150 to 2000 µmol m-2 s-1 for T. aestivum JM22 and from 150 to 1000 µmol m-2 s-1 for T. aestivum Z39-118. These findings demonstrated that the two methods cannot be used equivalently under changing irradiance conditions.


Assuntos
Luz , Fotossíntese/efeitos da radiação , Transpiração Vegetal/efeitos da radiação , Triticum/fisiologia , Clorofila/fisiologia , Fluorescência , Oxigênio/análise , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Triticum/efeitos da radiação
10.
Ther Drug Monit ; 41(4): 489-496, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31083044

RESUMO

BACKGROUND: Apatinib is a new oral micromolecular tyrosine kinase inhibitor, which is mainly used as a third-line treatment for chemotherapy-refractory advanced metastatic gastric cancer patients. However, apatinib has shown dose titration and severe adverse reactions in clinical practice. Quantification of plasma concentrations of apatinib may be an effective method to balance the clinical efficacy and adverse reactions. The purpose of this study was to develop and validate a 2-dimensional liquid chromatography method for the measurement of apatinib in plasma. METHODS: The analysis of apatinib was performed using a 2-dimensional high-performance liquid chromatography system. We precipitated the proteins with acetonitrile. The mobile phases consisted of a first-dimensional mobile phase (acetonitrile:methanol:25 mmol·L ammonium phosphate = 25:25:50, V/V/V, pH adjusted to 7.2 using phosphoric acid) and a second-dimensional mobile phase (acetonitrile:10 mmol·L ammonium phosphate = 28:72, vol/vol, pH adjusted to 3.7 using phosphoric acid). The ultraviolet detection wavelength was set at 340 nm. The temperature of the detector cell was 40°C, and the injection volume was 500 µL. RESULTS: The range of calibration curve was 15.27-1491.48 ng/mL. The accuracy and imprecision were within ±2.23% and less than 10.22%, respectively (intraday and interday). The range of recovery was 97.45%-108.92%. The intraday and interday relative SDs (reproducibility) of high-performance liquid chromatography retention times were less than 0.18% and 0.46%, respectively. In the clinical assessment, the dose range of apatinib mesylate for patients with gastric cancer was 250-500 mg every day (2-60 days), resulting in trough plasma concentrations between 272.7 and 727.8 ng/mL. CONCLUSIONS: A simple, convenient, accurate, and robust 2-dimensional liquid chromatography method was developed and verified, which successfully determined the plasma concentrations of apatinib in patients with gastric cancer.


Assuntos
Plasma/química , Piridinas/sangue , Calibragem , Cromatografia Líquida de Alta Pressão/métodos , Monitoramento de Medicamentos/métodos , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
11.
Curr Med Chem ; 20(23): 2929-37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23651306

RESUMO

Hydrogen sulfide (H2S), known for its unpleasant rotten egg smell and its high toxicity, has recently emerged as an important mediator of human physiological and pathological processes, such as the regulation of cell growth, cardiovascular protection, the stimulation of angiogenesis, gastric mucosal injury and Alzheimer's disease. Due to its significant actions in the physiology, H2S has attracted the abundant concern of numerous researchers in the cutting edge of chemistry, biology and medicine. Recently, several fluorescent probes have been developed for detecting and elucidating the role played by H2S in biological systems. This review highlights recent advances that have been made on the mechanism and applications of fluorescent probes for the detection of H2S, demonstrating a new field in which remarkable improvements have been accomplished over the last two years.


Assuntos
Técnicas de Química Analítica/tendências , Corantes Fluorescentes/química , Sulfeto de Hidrogênio/análise , Humanos
12.
Physiol Plant ; 139(1): 39-54, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20059730

RESUMO

Tolerance to the effects of drought and subsequent recovery after a rainfall appear to be critical for plants in the karst regions of southwestern China, which are characterized by frequent but temporary drought events. This study investigated the effects of drought intensity and repetition on photosynthesis and photoprotection mechanisms of karst plants during successive cycles of drought and subsequent recovery. Leaf water potential, gas exchange, chlorophyll fluorescence and several associated metabolic processes were studied in six plant species, including Pyracantha fortuneana (PF), Rosa cymosa (RC), Broussonetia papyrifera (BP), Cinnamomum bodinieri (CB), Platycarya longipes (PL) and Pteroceltis tatarinowii (PT) during three cycles of drought treatments at four different intensities. The four treatments were: well-watered, mild drought, moderate drought and severe drought, each followed by rewatering events. We found that limitations to CO(2) diffusion accounted for photosynthetic declines under mild and moderate drought treatments, while metabolic limitations dominated the response to severe drought. Repetition of drought did not intensify the impairment of photosynthetic metabolism regardless of drought intensity in the six species studied. Repetition of severe drought delayed the photosynthetic recoveries in PF, RC and CB after rewatering. Repetition of drought increased thermal dissipation in PF, CB and BP, as well as superoxide dismutase (EC 1.15.1.1) activity in RC and CB. Enhanced photosynthetic performance, measured as increased intrinsic water use efficiency, photosynthetic performance per unit of photosynthetic pigment, maintenance of high thermal dissipation and high ratios of carotenoids to chlorophylls, was observed during the rewatering periods. This enhanced photosynthetic performance allowed for the complete recovery of the six karst species from successive intermittent drought events.


Assuntos
Secas , Magnoliopsida/fisiologia , Broussonetia/fisiologia , Clorofila/metabolismo , Cinnamomum/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Pyracantha/fisiologia , Rosa/fisiologia , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA