Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 26(5): 811-824, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38671262

RESUMO

The mechanisms underlying the dynamic remodelling of cellular membrane phospholipids to prevent phospholipid peroxidation-induced membrane damage and evade ferroptosis, a non-apoptotic form of cell death driven by iron-dependent lipid peroxidation, remain poorly understood. Here we show that lysophosphatidylcholine acyltransferase 1 (LPCAT1) plays a critical role in ferroptosis resistance by increasing membrane phospholipid saturation via the Lands cycle, thereby reducing membrane levels of polyunsaturated fatty acids, protecting cells from phospholipid peroxidation-induced membrane damage and inhibiting ferroptosis. Furthermore, the enhanced in vivo tumour-forming capability of tumour cells is closely associated with the upregulation of LPCAT1 and emergence of a ferroptosis-resistant state. Combining LPCAT1 inhibition with a ferroptosis inducer synergistically triggers ferroptosis and suppresses tumour growth. Therefore, our results unveil a plausible role for LPCAT1 in evading ferroptosis and suggest it as a promising target for clinical intervention in human cancer.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Ferroptose , Fosfolipídeos , Humanos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Animais , Fosfolipídeos/metabolismo , Linhagem Celular Tumoral , Peroxidação de Lipídeos , Camundongos Nus , Membrana Celular/metabolismo , Camundongos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Proliferação de Células
2.
Clin Cancer Res ; 30(10): 2206-2224, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38470497

RESUMO

PURPOSE: Microvascular invasion (MVI) is a major unfavorable prognostic factor for intrahepatic metastasis and postoperative recurrence of hepatocellular carcinoma (HCC). However, the intervention and preoperative prediction for MVI remain clinical challenges due to the absent precise mechanism and molecular marker(s). Herein, we aimed to investigate the mechanisms underlying vascular invasion that can be applied to clinical intervention for MVI in HCC. EXPERIMENTAL DESIGN: The histopathologic characteristics of clinical MVI+/HCC specimens were analyzed using multiplex immunofluorescence staining. The liver orthotopic xenograft mouse model and mechanistic experiments on human patient-derived HCC cell lines, including coculture modeling, RNA-sequencing, and proteomic analysis, were used to investigate MVI-related genes and mechanisms. RESULTS: IQGAP3 overexpression was correlated significantly with MVI status and reduced survival in HCC. Upregulation of IQGAP3 promoted MVI+-HCC cells to adopt an infiltrative vessel co-optive growth pattern and accessed blood capillaries by inducing detachment of activated hepatic stellate cells (HSC) from the endothelium. Mechanically, IQGAP3 overexpression contributed to HCC vascular invasion via a dual mechanism, in which IQGAP3 induced HSC activation and disruption of the HSC-endothelial interaction via upregulation of multiple cytokines and enhanced the trans-endothelial migration of MVI+-HCC cells by remodeling the cytoskeleton by sustaining GTPase Rac1 activity. Importantly, systemic delivery of IQGAP3-targeting small-interfering RNA nanoparticles disrupted the infiltrative vessel co-optive growth pattern and reduced the MVI of HCC. CONCLUSIONS: Our results revealed a plausible mechanism underlying IQGAP3-mediated microvascular invasion in HCC, and provided a potential target to develop therapeutic strategies to treat HCC with MVI.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Invasividade Neoplásica , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Microvasos/patologia , Microvasos/metabolismo , Masculino , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Proliferação de Células , Prognóstico , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Movimento Celular/genética
3.
Technol Health Care ; 32(2): 675-693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37545266

RESUMO

BACKGROUND: During an outbreak such as COVID-19, hospital staff needs to be in close contact with all types of patients visiting the hospital and the risk of cross-infection is extremely high. Payment and medication pickup is a mandatory part of a patient's hospital visit, with direct contact between healthcare workers and patients, and long waiting times in the hospital area, which can easily lead to the spread of disease infection. OBJECTIVE: This paper designed the prototype of a contactless smart medicine cabinet based on RFID technology and optimized the patient consultation and medication pickup process to address these problems. METHODS: We conducted a 50-day field observation of patients for consultation and medication pickup at the First Hospital in H city, Jiangsu Province, China, and randomly timed 1600 sets of data from Surgery (ophthalmology) and Internal patients, then we designed the prototype of a contactless smart medicine cabinet based on RFID technology, optimized the patient consultation and medication pickup process, comparing the traditional and intelligent models using AnyLogic. RESULTS: The results show that this contactless medicine cabinet was able to reduce the time taken by patients in consultation and medicine pickup by 18.74 minutes, increasing the overall efficiency of the consultation by 32.20%. The simulation revealed that this contactless intelligent medication pickup model was able to reduce the time taken by patients in consultation and medicine pickup, increasing the overall efficiency of the consultation, effectively reducing the frequency of contact between healthcare workers and patients, and reducing the risk of disease infection. CONCLUSION: The proposed technical model provides a new idea to solve the problems of long queues, low efficiency and high risk of infection for patients to consult and get medicine during epidemics. Especially within hospitals it has important theoretical and practical implications for epidemic prevention and control as well as future hospital management.


Assuntos
COVID-19 , Humanos , Hospitais , Surtos de Doenças , China
4.
Cell Death Dis ; 14(8): 568, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633920

RESUMO

Sustained activation of DNA damage response (DDR) signaling has been demonstrated to play vital role in chemotherapy failure in cancer. However, the mechanism underlying DDR sustaining in cancer cells remains unclear. In the current study, we found that the expression of the DDUP microprotein, encoded by the CTBP1-DT lncRNA, drastically increased in cisplatin-resistant ovarian cancer cells and was inversely correlated to cisplatin-based therapy response. Using a patient-derived human cancer cell model, we observed that DNA damage-induced DDUP foci sustained the RAD18/RAD51C and RAD18/PCNA complexes at the sites of DNA damage, consequently resulting in cisplatin resistance through dual RAD51C-mediated homologous recombination (HR) and proliferating cell nuclear antigen (PCNA)-mediated post-replication repair (PRR) mechanisms. Notably, treatment with an ATR inhibitor disrupted the DDUP/RAD18 interaction and abolished the effect of DDUP on prolonged DNA damage signaling, which resulted in the hypersensitivity of ovarian cancer cells to cisplatin-based therapy in vivo. Altogether, our study provides insights into DDUP-mediated aberrant DDR signaling in cisplatin resistance and describes a potential novel therapeutic approach for the management of platinum-resistant ovarian cancer.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , Cisplatino/uso terapêutico , Proteínas de Ligação a DNA/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Antígeno Nuclear de Célula em Proliferação , RNA Longo não Codificante/genética , Ubiquitina-Proteína Ligases , Micropeptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA