Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 225: 79-89, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36460246

RESUMO

Anisotropic hydrogels have attracted extensive attention because they are similar to natural hydrogel-like materials and exhibit superiority and new functions that isotropic hydrogels cannot. Here, we fabricated strong and tough carboxymethyl cellulose-based conductive hydrogels with oriented hierarchical structures through pre-stretching, solvent displacement induced phase separation, and subsequent ionic crosslinking immobilization. Solvent displacement made the pre-stretched carboxymethyl cellulose-based polymer network more dense and linear, while the toughness of the hydrogel was further improved under the effect of phase separation. Strong and tough hydrogels were prepared by combining pre-stretching and phase separation; the variation range (tensile strength of 2.24-6.19 MPa and toughness of 19.41-22.92 MJ/m3) can be adjusted by the stretching ratio. Compared with traditional carboxymethyl cellulose-based hydrogels, the tensile strength and toughness were increased by 49 times and 15 times, respectively. In addition, the hydrogels had good underwater stability, ion cross-linking made the hydrogels have good conductivity, and the directional stratification structure gave the hydrogels conductive anisotropy. These characteristics give hydrogel sensors broad application prospects in flexible wearable devices, anisotropic sensors, and intelligent underwater devices.


Assuntos
Carboximetilcelulose Sódica , Hidrogéis , Anisotropia , Condutividade Elétrica , Solventes
2.
Environ Sci Pollut Res Int ; 30(7): 17915-17925, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36205858

RESUMO

The management of fireworks has been strengthened during the Spring Festival in 2022 compared with that in 2021 in Linyi, a central city in the North China Plain. Online measurements of the chemical components of PM2.5 were conducted during the Spring Festival in 2021-2022 to assess the influence of fireworks burning (FB) on air quality. Remarkable achievements have been made in improving air quality during FB period (FBP) in 2021-2022 attributing to the stringent regional emission reduction measures, fireworks control, and favorable meteorological conditions with the concentrations of PM2.5, water-soluble ions, and carbonaceous aerosols decreasing by 73.6%, 78.8%, and 73.5%, respectively. The PM2.5 concentrations increased by 96.3% during FBP compared with those during non-FB period (NFBP) in 2021, while the opposite phenomenon was observed in 2022 with PM2.5 concentrations decreasing by 56.2% because of the favorable meteorological condition during FBP in 2022. As indicators of FB, the Cl-, K+, and Mg2+ concentrations showed an increasing trend during FBP compared with that during NFBP, both in 2021 and 2022, but had little effect on other components. The contribution of FB to PM2.5 decreased from 68.4% in 2021 to 15.7% in 2022 based on the relative ratio method, indicating the various measures conducted by all districts and counties in Linyi helped achieve near zero fireworks emissions by 2022. Besides, the contribution of FB to PM2.5 showed a straight-line upward trend from 19:00 on New Year's Eve, reached its peak (76.1%) at 3:00 on Lunar New Year's Day, while the highest value was only 35.0% during FBP in 2022, indicating the implementation of fireworks ban measures in Linyi achieved a good effect on pollution peak cutting. This study has emphasized the necessity of FB restricting during special holidays.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Férias e Feriados , Urbanização , Monitoramento Ambiental , China , Estações do Ano , Aerossóis/análise
3.
J Hazard Mater ; 441: 129965, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36122524

RESUMO

Oil spills frequently occur in the ocean, and adsorption is one of the effective ways to deal with oil spills. Compared with other adsorbent materials, biomass aerogel has superior selective adsorption capacity. CNF/SA aerogels with good mechanical properties (340 kPa at 90 % strain) and high adsorption capacity (88.91 g/g) were prepared by mixing cellulose nanofibers (CNF) with sodium alginate (SA) through bidirectional freeze-drying, ionic crosslinking, and surface modification to effectively solve the ocean oil spill problem. The bidirectional freeze-drying technology is a green and efficient technique for preparing layered microstructured composite aerogels. The prepared aerogels have a three-dimensional interpenetrating lamellar structure, low density (24.2 mg/cm3), high porosity (97.85 %), and high hydrophobicity (WCA = 144.5°), can be calibrated and used repeatedly. It has potential applications in water-oil separation and can be used as an absorbent for effectively treating oil spills in the ocean environment.


Assuntos
Incrustação Biológica , Nanofibras , Alginatos , Incrustação Biológica/prevenção & controle , Celulose/química , Géis/química , Interações Hidrofóbicas e Hidrofílicas , Nanofibras/química , Oceanos e Mares , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA