Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharm Biol ; 57(1): 649-659, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31545916

RESUMO

Context: Dexmedetomidine (Dex) has been reported to have an anti-inflammatory effect. However, its role on osteoarthritis (OA) has not been explored. Objective: This study investigates the effect of Dex on OA rat model induced by papain. Materials and methods: The OA Wistar rat model was induced by intraluminal injection of 20 mL of papain mixed solution (4% papain 0.2 mL mixed with 0.03 mol L-1 l-cysteine 0.1 mL) into the right knee joint. Two weeks after papain injection, OA rats were treated by intra-articular injection of Dex (5, 10, or 20 µg kg-1) into the right knee (once a day, continuously for 4 weeks). Articular cartilage tissue was obtained after Dex treatment was completed. Results: The gait behavior scores (2.83 ± 0.49), PWMT (15.2 ± 1.78) and PTWL (14.81 ± 0.92) in H-DEX group were higher than that of OA group, while Mankin score (5.5 ± 0.81) was decreased (p < 0.05). Compared with the OA group, the IL-1ß (153.11 ± 16.05 pg mg-1), IL-18 (3.71 ± 0.7 pg mg-1), IL-6 (14.15 ± 1.94 pg/mg) and TNF-α (40.45 ± 10.28 pg mg-1) levels in H-DEX group were decreased (p < 0.05). MMP-13, NLRP3, and caspase-1 p10 expression in Dex groups were significantly lower than that of OA group (p < 0.05), while collagen II was increased (p < 0.05). p65 in the nucleus of Dex groups was significantly down-regulated than that of OA group (p < 0.05). Discussion and Conclusions: Dex can improve pain symptoms and cartilage tissue damage of OA rats, which may be related to its inhibition of the activation of NF-κB and NLRP3 inflammasome.


Assuntos
Anti-Inflamatórios/farmacologia , Dexmedetomidina/farmacologia , Inflamassomos/efeitos dos fármacos , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Animais , Cartilagem Articular/efeitos dos fármacos , Masculino , Metaloproteinase 13 da Matriz , Modelos Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoartrite/induzido quimicamente , Papaína/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
2.
J Pain Res ; 11: 649-659, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662325

RESUMO

PURPOSE: Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh) signaling in opioid-induced hyperalgesia and tolerance. METHODS: Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH) and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA) were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF) inhibitor K252 and anti-BDNF antibody were used. RESULTS: Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh signaling. In naïve mice, exogenous activation of Shh signaling caused a rapid increase of BDNF expression, as well as thermal hyperalgesia. Inhibiting BDNF significantly suppressed smoothened agonist-induced hyperalgesia. CONCLUSION: These findings suggest that Shh signaling may be a critical mediator for MIH and tolerance by regulating BDNF expression. Inhibiting Shh signaling, especially during the early phase, may effectively delay or suppress MIH and tolerance.

3.
J Pain Res ; 11: 599-609, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29606887

RESUMO

OBJECTIVE: The analgesic effect on chronic pain of peripheral nerve stimulation (PNS) has been proven, but its underlying mechanism remains unknown. Therefore, this study aimed to assess the analgesic effect of PNS on bone cancer pain in a rat model and to explore the underlying mechanism. MATERIALS AND METHODS: PNS on sciatic nerves with bipolar electrode was performed in both naïve and bone cancer pain model rats. Then, the protein levels of activity-regulated cytoskeleton-associated protein (Arc), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor 1 (GluA1), and phosphate N-methyl-d-aspartic acid-type glutamate receptor subunit 2B (pGluNR2B) in spinal cord were evaluated by immunohistochemistry and Western blotting. Thermal paw withdraw latency and mechanical paw withdraw threshold were used to estimate the analgesic effect of PNS on bone cancer pain. Intrathecal administration of Arc shRNA was used to inhibit Arc expression in the spinal cord. RESULTS: PNS at 60 and 120 Hz for 20 min overtly induced Arc expression in the spinal cord, increased thermal pain thresholds in naïve rats, and relieved bone cancer pain; meanwhile, 10 Hz PNS did not achieve those results. In addition, PNS at 60 and 120 Hz also reduced the expression of GluA1, but not pGluNR2B, in the spinal cord. Finally, the anti-nociceptive effect and GluA1 downregulation induced by PNS were inhibited by intrathecal administration of Arc shRNA. CONCLUSION: PNS (60 Hz, 0.3 mA) can relieve bone-cancer-induced allodynia and hyperalgesia by upregulating Arc protein expression and then by decreasing GluA1 transcription in the spinal cord dorsal horn.

4.
Mol Pain ; 14: 1744806918767560, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29607715

RESUMO

Treating bone cancer pain continues to be a clinical challenge and underlying mechanisms of bone cancer pain remain elusive. Here, we reported that sonic hedgehog signaling plays a critical role in the development of bone cancer pain. Tibia bone cavity tumor cell implantation produces bone cancer-related mechanical allodynia, thermal hyperalgesia, and spontaneous and movement-evoked pain behaviors. Production and persistence of these pain behaviors are well correlated with tumor cell implantation-induced up-regulation and activation of sonic hedgehog signaling in primary sensory neurons and spinal cord. Spinal administration of sonic hedgehog signaling inhibitor cyclopamine prevents and reverses the induction and persistence of bone cancer pain without affecting normal pain sensitivity. Inhibiting sonic hedgehog signaling activation with cyclopamine, in vivo or in vitro, greatly suppresses tumor cell implantation-induced increase of intracellular Ca2+ and hyperexcitability of the sensory neurons and also the activation of GluN2B receptor and the subsequent Ca2+-dependent signals CaMKII and CREB in dorsal root ganglion and the spinal cord. These findings show a critical mechanism underlying the pathogenesis of bone cancer pain and suggest that targeting sonic hedgehog signaling may be an effective approach for treating bone cancer pain.


Assuntos
Neoplasias Ósseas/complicações , Dor do Câncer/etiologia , Dor do Câncer/patologia , Proteínas Hedgehog/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Animais , Cálcio/metabolismo , Dor do Câncer/metabolismo , Linhagem Celular Tumoral , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Espaço Intracelular/metabolismo , Transplante de Neoplasias , Nociceptividade , Ratos Sprague-Dawley , Medula Espinal/patologia , Regulação para Cima
5.
J Pain ; 19(2): 186-195, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29079540

RESUMO

Glial cell hyperactivity has been proposed to be responsible for chronic pain, however, the mechanisms remain unclear. Interleukin (IL)-18, released from glial cells, has been reported to be involved in neuropathic pain. In this study, we investigated the role of IL-18 in bone cancer pain. Bone cancer pain was mimicked by injecting Walker-256 mammary gland carcinoma cells into the intramedullary space of the tibia in rats. Expression and location of IL-18 and the IL-18 receptor were tested. To investigate the contribution of IL-18 signaling to bone cancer pain, IL-18 binding protein and recombinant IL-18 were used. To investigate the mechanisms of glial cells effects, MK801, N-methyl-D-aspartate (NMDA) receptor inhibitor, and Src kinase-specific inhibitor PP1 were used. Tumor cell implantation (TCI) treatment increased expression of IL-18 and IL-18 receptor in spinal cord. The time course of IL-18 upregulation was correlated with TCI-induced pain behaviors. Blocking the IL-18 signaling pathway prevented and reversed bone cancer-related pain behaviors. Meanwhile, blocking IL-18 signaling also suppressed TCI-induced glial cell hyperactivity, as well as activation of GluN2B and subsequent Ca2+-dependent signaling. Spinal administration of recombinant IL-18 in naive rat induced significant mechanical allodynia, as well as GluN2B activation. However, intrathecal injection of MK801 failed to suppress recombinant IL-18-induced GluN2B phosphorylation, whereas Src kinase inhibitor PP1 significantly inhibited IL-18-induced GluN2B activation. IL-18-mediated glial-glia and glial-neuron interaction may facilitate bone cancer pain. Blocking IL-18 signaling may effectively prevent and/or suppress bone cancer pain. PERSPECTIVE: IL-18 signaling may be a new target for cancer pain therapy.


Assuntos
Dor do Câncer/patologia , Interleucina-18/metabolismo , Neuroglia/fisiologia , Neurônios/fisiologia , Medula Espinal/patologia , Animais , Neoplasias Ósseas/complicações , Dor do Câncer/tratamento farmacológico , Dor do Câncer/etiologia , Carcinoma/complicações , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Injeções Espinhais , Interleucina-18/efeitos adversos , Ratos , Receptores de Interleucina-18/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Pain ; 156(12): 2572-2584, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407042

RESUMO

Treating neuropathic pain continues to be a major clinical challenge and underlying mechanisms of neuropathic pain remain elusive. We have recently demonstrated that Wnt signaling, which is important in developmental processes of the nervous systems, plays critical roles in the development of neuropathic pain through the ß-catenin-dependent pathway in the spinal cord and the ß-catenin-independent pathway in primary sensory neurons after nerve injury. Here, we report that Wnt signaling may contribute to neuropathic pain through the atypical Wnt/Ryk signaling pathway in rats. Sciatic nerve injury causes a rapid-onset and long-lasting expression of Wnt3a, Wnt5b, and Ryk receptors in primary sensory neurons, and dorsal horn neurons and astrocytes. Spinal blocking of the Wnt/Ryk receptor signaling inhibits the induction and persistence of neuropathic pain without affecting normal pain sensitivity and locomotor activity. Blocking activation of the Ryk receptor with anti-Ryk antibody, in vivo or in vitro, greatly suppresses nerve injury-induced increased intracellular Ca and hyperexcitability of the sensory neurons, and also the enhanced plasticity of synapses between afferent C-fibers and the dorsal horn neurons, and activation of the NR2B receptor and the subsequent Ca-dependent signals CaMKII, Src, ERK, PKCγ, and CREB in sensory neurons and the spinal cord. These findings indicate a critical mechanism underlying the pathogenesis of neuropathic pain and suggest that targeting the Wnt/Ryk signaling may be an effective approach for treating neuropathic pain.


Assuntos
Astrócitos/metabolismo , Comportamento Animal/fisiologia , Neuralgia/metabolismo , Plasticidade Neuronal/fisiologia , Células do Corno Posterior/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Células Receptoras Sensoriais/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Locomoção/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Fibras Nervosas Amielínicas/efeitos dos fármacos , Neuralgia/genética , Plasticidade Neuronal/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Técnicas de Patch-Clamp , Proteína Quinase C , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Nervo Isquiático/lesões , Transdução de Sinais , Medula Espinal/metabolismo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A/antagonistas & inibidores , Proteína Wnt3A/metabolismo , Quinases da Família src/efeitos dos fármacos , Quinases da Família src/metabolismo
7.
Mediators Inflamm ; 2015: 752512, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26819501

RESUMO

OBJECTIVE: The present study is to investigate the analgesic roles of L-THP in rats with bone cancer pain caused by tumor cell implantation (TCI). METHODS: Thermal hyperalgesia and mechanical allodynia were measured at different time points before and after operation. L-THP (20, 40, and 60 mg/kg) were administrated intragastrically at early phase of postoperation (before pain appearance) and later phase of postoperation (after pain appearance), respectively. The concentrations of TNF-α, IL-1ß, and IL-18 in spinal cord were measured by enzyme-linked immunosorbent assay. Western blot was used to test the activation of astrocytes and microglial cells in spinal cord after TCI treatment. RESULTS: TCI treatment induced significant thermal hyperalgesia and mechanical allodynia. Administration of L-THP at high doses significantly prevented and/or reversed bone cancer-related pain behaviors. Besides, TCI-induced activation of microglial cells and the increased levels of TNF-α and IL-18 were inhibited by L-THP administration. However, L-THP failed to affect TCI-induced astrocytes activation and IL-1ß increase. CONCLUSION: This study suggests the possible clinical utility of L-THP in the treatment of bone cancer pain. The analgesic effects of L-THP on bone cancer pain maybe underlying the inhibition of microglial cells activation and proinflammatory cytokines increase.


Assuntos
Alcaloides de Berberina/farmacologia , Neoplasias Ósseas/fisiopatologia , Microglia/efeitos dos fármacos , Dor Intratável/tratamento farmacológico , Animais , Relação Dose-Resposta a Droga , Feminino , Hiperalgesia/tratamento farmacológico , Interleucina-18/análise , Microglia/fisiologia , Transplante de Neoplasias , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/análise
8.
Behav Pharmacol ; 25(4): 267-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24978483

RESUMO

The objective of this study was to explore the role of cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signaling in the development of bone cancer pain in rats. Female Sprague-Dawley rats (N=48) were divided randomly into four groups: sham (n=8), tumor cell implantation (TCI) (n=16), TCI+saline (n=8), and TCI+PKA inhibitor (n=16). Bone cancer-induced pain behaviors - thermal hyperalgesia and mechanical allodynia - were tested at postoperative days -3, -1, 1, 3, 5, 7, 10, and 14. A PKA inhibitor, Rp-cAMPS (1 mmol/l/20 µl), was injected intrathecally on postoperative days 3, 4, and 5 (early phase) or 7, 8, and 9 postoperative days (late phase). The expression of PKA mRNA in dorsal root ganglia (DRG) was detected by reverse transcription-PCR. The concentration of cAMP and activity of PKA in DRG and spinal cord were measured by enzyme-linked immunosorbent assay. TCI treatment induced significant pain behaviors, manifested as thermal hyperalgesia and mechanical allodynia. Spinal administration of the PKA inhibitor Rp-cAMPS during the early phase and late phase significantly delayed or reversed, respectively, TCI-induced thermal hyperalgesia and mechanical allodynia. TCI treatment also led to obvious tumor growth and bone destruction. The level of PKA mRNA in the DRG, as well as the concentration of cAMP and the activity of PKA, in both the DRG and spinal cord were significantly increased after TCI treatment (P<0.01). We conclude that the inhibition of the cAMP-PKA signaling pathway may reduce bone cancer pain.


Assuntos
Neoplasias Ósseas/fisiopatologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Gânglios Espinais/fisiopatologia , Dor/fisiopatologia , Medula Espinal/fisiopatologia , Animais , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Modelos Animais de Doenças , Ciclo Estral/fisiologia , Feminino , Gânglios Espinais/efeitos dos fármacos , Temperatura Alta , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Transplante de Neoplasias , Dor/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Tionucleotídeos/farmacologia , Fatores de Tempo , Tato
9.
Spine (Phila Pa 1976) ; 39(19): 1533-41, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24921837

RESUMO

STUDY DESIGN: A prospective, randomized experimental research. OBJECTIVE: To demonstrate the role of cGMP (cyclic guanosine monophosphate)-cGKI (cGMP-dependent protein kinase I) pathway in dorsal root ganglia (DRG) in bone cancer pain. SUMMARY OF BACKGROUND DATA: Treating bone cancer pain continues to possess a major clinical challenge because the specific cellular and molecular mechanisms underlying bone cancer pain remain elusive. cGMP and cGMP-dependent protein kinases pathway in DRG plays important role in nerve injury-induced hyperexcitability of DRG neurons, as well as neuropathic pain, however, whether this pathway participates in bone cancer pain is unknown. METHODS: The rat model of bone cancer pain was produced by intramedullary injection of rat breast cancer cells (Walker 256) into right tibia. Thermal hyperalgesia and mechanical allodynia were measured before and after administration of inhibitor of cGMP-cGKs pathway (Rp-8-pCPT-cGMPS). Immunofluorescence and reverse transcription-polymerase chain reaction were used to reflect expression of cGKI in DRG neurons, whereas the concentration of cGMP in DRG was tested using enzyme-linked immunosorbent assay method. Whole-cell patch clamp was used to record the hyperexcitability of small neurons in DRG with or without cGKs inhibitor after tumor cell implantation (TCI). RESULTS: TCI treatment significantly increased the concentration of cGMP in DRG and activity of cGKs in DRG and the spinal cord. TCI treatment also induced upregulation of cGKI messenger ribonucleic acid and protein in DRG, as well as enhanced hyperexcitability in DRG neurons. Spinal administration of Rp-8-pCPT-cGMPS, cGMP-cGKs inhibitor, significantly suppressed TCI-induced activation of cGMP-cGKI signaling, and hyperexcitability of DRG neurons. Meanwhile, in vivo intrathecal delivery of the Rp-8-pCPT-cGMPS significantly prevented and suppressed TCI-induced hyperalgesia and allodynia. CONCLUSION: From these results, we confirm that TCI treatment activates cGMP-cGKI signaling pathway and continuing activation of this pathway in DRG is required for hyperalgesia and/or hyperalgesia and allodynia after TCI treatment. LEVEL OF EVIDENCE: N/A.


Assuntos
Neoplasias Ósseas/secundário , Carcinoma 256 de Walker/secundário , Proteína Quinase Dependente de GMP Cíclico Tipo I/fisiologia , GMP Cíclico/fisiologia , Gânglios Espinais/fisiopatologia , Hiperalgesia/fisiopatologia , Proteínas de Neoplasias/fisiologia , Células Receptoras Sensoriais/fisiologia , Tíbia , Animais , Neoplasias Ósseas/fisiopatologia , Carcinoma 256 de Walker/fisiopatologia , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Proteína Quinase Dependente de GMP Cíclico Tipo I/antagonistas & inibidores , Proteína Quinase Dependente de GMP Cíclico Tipo I/biossíntese , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Indução Enzimática , Feminino , Temperatura Alta , Hiperalgesia/etiologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Limiar da Dor , Técnicas de Patch-Clamp , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Tionucleotídeos/farmacologia , Tíbia/inervação , Tato
10.
Pain ; 154(12): 2823-2835, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23973554

RESUMO

Treating bone cancer pain poses a major clinical challenge, and the mechanisms underlying bone cancer pain remain elusive. EphrinB-EphB receptor signaling may contribute to bone cancer pain through N-methyl-d-aspartate receptor neuronal mechanisms. Here, we report that ephrinB-EphB signaling may also act through a Toll-like receptor 4 (TLR4)-glial cell mechanism in the spinal cord. Bone cancer pain was induced by tibia bone cavity tumor cell implantation (TCI) in rats. TCI increased the expression of TLR4 and the EphB1 receptor, the activation of astrocytes and microglial cells, and increased levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). The increased expression of TLR4 and EphB1 were colocalized with each other in astrocytes and microglial cells. Spinal knockdown of TLR4 suppressed TCI-induced behavioral signs of bone cancer pain. The TCI-induced activation of astrocytes and microglial cells, as well as the increased levels of IL-1ß and TNF-α, were inhibited by intrathecal administration of TLR4-targeting siRNA2 and the EphB receptor antagonist EphB2-Fc, respectively. The administration of EphB2-Fc suppressed the TCI-induced increase of TLR4 expression but siRNA2 failed to affect TCI-induced EphB1 expression. Intrathecal administration of an exogenous EphB1 receptor activator, ephrinB2-Fc, increased the expression of TLR4 and the levels of IL-1ß and TNF-α, activated astrocytes and microglial cells, and induced thermal hypersensitivity. These ephrinB2-Fc-induced alterations were suppressed by spinal knockdown of TLR4. This study suggests that TLR4 may be a potential target for preventing or reversing bone cancer pain and other similar painful processes mediated by ephrinB-EphB receptor signaling.


Assuntos
Neoplasias Ósseas/metabolismo , Efrina-B2/administração & dosagem , Mediadores da Inflamação/metabolismo , Receptor EphB1/metabolismo , Medula Espinal/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Neoplasias Ósseas/patologia , Feminino , Injeções Espinhais , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Receptor EphB1/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
11.
Med Hypotheses ; 81(2): 192-4, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23742812

RESUMO

Electrical nerve stimulation (ENS) is used in clinical settings for the treatment of chronic pain, but the mechanism underlying its effects remains unknown. ENS has been found to mimic neural activity, inducing the accumulation of Arc in synapses. Activity-dependent synaptic accumulation of Arc protein has been shown to reduce synaptic strength by promoting endocytosis of the AMPA receptors in the synaptic membrane. These receptors play a decisive role in central sensitization, which is one of the main mechanisms underlying chronic pain. It is here hypothesized that ENS induces Arc expression in synapses, where Arc promotes endocytosis of membrane AMPARs that are up-regulated during chronic pain. High frequency and high intensity are characteristics of ENS, which may be effective in the treatment of chronic pain. Stimulation-site of ENS may also influence the outcome of ENS.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Estimulação Elétrica , Proteínas do Tecido Nervoso/metabolismo , Dor/fisiopatologia , Sinapses/metabolismo , Doença Crônica , Humanos
12.
J Clin Invest ; 123(5): 2268-86, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23585476

RESUMO

Treating neuropathic pain is a major clinical challenge, and the underlying mechanisms of neuropathic pain remain elusive. We hypothesized that neuropathic pain-inducing nerve injury may elicit neuronal alterations that recapitulate events that occur during development. Here, we report that WNT signaling, which is important in developmental processes of the nervous system, plays a critical role in neuropathic pain after sciatic nerve injury and bone cancer in rodents. Nerve injury and bone cancer caused a rapid-onset and long-lasting expression of WNTs, as well as activation of WNT/frizzled/ß-catenin signaling in the primary sensory neurons, the spinal dorsal horn neurons, and astrocytes. Spinal blockade of WNT signaling pathways inhibited the production and persistence of neuropathic pain and the accompanying neurochemical alterations without affecting normal pain sensitivity and locomotor activity. WNT signaling activation stimulated production of the proinflammatory cytokines IL-18 and TNF-α and regulated the NR2B glutamate receptor and Ca2+-dependent signals through the ß-catenin pathway in the spinal cord. These findings indicate a critical mechanism underlying the pathogenesis of neuropathic pain and suggest that targeting the WNT signaling pathway may be an effective approach for treating neuropathic pain, including bone cancer pain.


Assuntos
Neuralgia/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Animais , Cálcio/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Interleucina-18/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Pain ; 152(11): 2605-2615, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21907492

RESUMO

Adenosine triphosphate-sensitive potassium (K(ATP)) channels are suggested to be involved in pathogenesis of neuropathic pain, but remain underinvestigated in primary afferents and in the spinal cord. We examined alterations of K(ATP) channels in rat spinal cord and tested whether and how they could contribute to neuropathic pain. The results showed that protein expression for K(ATP) channel subunits SUR1, SUR2, and Kir6.1, but not Kir6.2, were significantly downregulated and associated with thermal hyperalgesia and mechanical allodynia after sciatic nerve injury. Spinal administration of a K(ATP) channel opener cromakalim (CRO, 5, 10, and 20 µg, respectively) prevented or suppressed, in a dose-dependent manner, the hyperalgesia and allodynia. Nerve injury also significantly increased expression and phosphorylation of connexin 43, an astroglial gap junction protein. Such an increase of phosphorylation of connexin 43 was inhibited by CRO treatment. Furthermore, preadministration of an astroglial gap junction decoupler carbenoxolone (10 µg) completely reversed the inhibitory effects of CRO treatment on the hyperalgesia and allodynia and phosphorylation of NR1 and NR2B receptors and the subsequent activation of Ca(2+)-dependent signals Ca(2+)/calmodulin-dependent kinase II and cyclic adenosine monophosphate (cAMP) response element binding protein. These findings suggest that nerve injury-induced downregulation of the K(ATP) channels in the spinal cord may interrupt the astroglial gap junctional function and contribute to neuropathic pain, thus the K(ATP) channels opener can reduce neuropathic pain probably partly via regulating the astroglial gap junctions. This study may provide a new strategy for treating neuropathic pain using K(ATP) channel openers in the clinic.


Assuntos
Cromakalim/farmacologia , Canais KATP/agonistas , Canais KATP/fisiologia , Neuralgia/tratamento farmacológico , Neuralgia/fisiopatologia , Medula Espinal/fisiopatologia , Transportadores de Cassetes de Ligação de ATP/efeitos adversos , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/fisiologia , Hiperalgesia/fisiopatologia , Masculino , Canais de Potássio Corretores do Fluxo de Internalização/efeitos adversos , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Droga/fisiologia , Ciática/tratamento farmacológico , Ciática/fisiopatologia , Medula Espinal/efeitos dos fármacos , Receptores de Sulfonilureias
14.
Cancer Res ; 71(13): 4392-402, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21555368

RESUMO

Treating bone cancer pain continues to be a clinical challenge and underlying mechanisms of bone cancer pain remain elusive. Here, we report that EphB1 receptor forward signaling in the spinal cord is critical to the development of bone cancer pain and morphine tolerance in treating bone cancer pain. Tibia bone cavity tumor cell implantation (TCI) produces bone cancer-related thermal hyperalgesia, mechanical allodynia, spontaneous and movement-evoked pain behaviors, and bone destruction. Production and persistence of these pain behaviors are well correlated with TCI-induced upregulation of EphB1 receptor and its ligand ephrinB2 in the dorsal horn and primary sensory neurons. Spinal administration of an EphB1 receptor blocking reagent EphB2-Fc prevents and reverses bone cancer pain behaviors and the associated induction of c-Fos and activation of astrocytes and microglial cells, NR1 and NR2B receptors, Src within the N-methyl-D-aspartate receptor complex, and the subsequent Ca(2+)-dependent signals. The exogenous ligand ephrinB2-Fc upregulates level of phosphorylation of NR1 and NR2B receptors depending on the activation of EphB1 receptor. Spinal administration of EphB2-Fc and ephrinB2-Fc induces downregulation of EphB1 and ephrinB2, respectively, accompanied with increased activity of matrix metalloproteinase (MMP)-2/9. Blocking MMP-2 or MMP-9 reverses EphB1-Fc treatment-induced downregulation of EphB1 receptor. In addition, spinal blocking or targeted mutation of EphB1 receptor reverses morphine tolerance in treating bone cancer pain in rats and defensive pain in mice. These findings show a critical mechanism underlying the pathogenesis of bone cancer pain and suggest a potential target for treating bone cancer pain and improving analgesic effect of morphine clinically.


Assuntos
Analgésicos Opioides/farmacologia , Neoplasias Ósseas/metabolismo , Morfina/farmacologia , Dor/tratamento farmacológico , Dor/metabolismo , Receptor EphB1/antagonistas & inibidores , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Animais , Neoplasias Ósseas/complicações , Neoplasias Ósseas/patologia , Regulação para Baixo , Efrina-B2/biossíntese , Efrina-B2/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz , Camundongos , Camundongos Transgênicos , Dor/etiologia , Ratos , Ratos Sprague-Dawley , Receptor EphB1/biossíntese , Receptor EphB1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
J Neurosci ; 30(22): 7613-23, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20519536

RESUMO

Preventing and reversing opioid dependence continues to be a clinical challenge and underlying mechanisms of opioid actions remain elusive. We report that matrix metalloproteinase-9 (MMP-9) in the spinal cord contributes to development of physical dependence on morphine. Chronic morphine exposure and naloxone-precipitated withdrawal increase activity of spinal MMP-9. Spinal inhibition or targeted mutation of MMP-9 suppresses behavioral signs of morphine withdrawal and the associated neurochemical alterations. The increased MMP-9 activity is mainly distributed in the superficial dorsal horn and colocalized primarily with neurons and small numbers of astrocytes and microglia. Morphine exposure and withdrawal increase phosphorylation of NR1 and NR2B receptors, ERK1/2, calmodulin-dependent kinase II, and cAMP response element binding proteins; and such phosphorylation is suppressed by either spinal inhibition or targeted mutation of MMP-9. Further, spinal administration of exogenous MMP-9 induces morphine withdrawal-like behavioral signs and mechanical allodynia, activates NR1 and NR2 receptors, and downregulates integrin-beta1, while a function-neutralizing antibody against integrin-beta1 suppresses MMP-9-induced phosphorylation of NR1 and NR2B. Morphine withdrawal-induced MMP-9 activity is also reduced by an nNOS inhibitor. Thus, we hypothesize that spinal MMP-9 may contribute to the development of morphine dependence primarily through neuronal activation and interaction with NR1 and NR2B receptors via integrin-beta1 and NO pathways. The other gelatinase, MMP-2, is not involved in morphine dependence. Inhibiting spinal MMP-9 or MMP-2 reduces chronic and/or acute morphine tolerance. This study suggests a novel therapeutic approach for preventing, minimizing, or reversing opioid dependence and tolerance.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Dependência de Morfina/patologia , Dependência de Morfina/fisiopatologia , Medula Espinal/enzimologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Tolerância a Medicamentos/fisiologia , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hiperalgesia/fisiopatologia , Masculino , Metaloproteinase 9 da Matriz/deficiência , Metaloproteinase 9 da Matriz/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfina/efeitos adversos , Dependência de Morfina/tratamento farmacológico , Naloxona/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , Entorpecentes/efeitos adversos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Fatores de Tempo
16.
Anesthesiology ; 112(5): 1234-49, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20395829

RESUMO

BACKGROUND: Our previous studies have demonstrated that EphBs receptors and ephrinBs ligands were involved in modulation of spinal nociceptive information. However, the downstream mechanisms that control this process are not well understood. The aim of this study was to further investigate whether mitogen-activated protein kinases (MAPKs), as the downstream effectors, participate in modulation of spinal nociceptive information related to ephrinBs/EphBs. METHODS: Thermal hyperalgesia and mechanical allodynia were measured using radiant heat and von Frey filaments test. Immunofluorescence staining was used to detect the expression of p-MAPKs and of p-MAPKs/neuronal nuclei, or p-MAPKs/glial fibrillary acidic protein double label. C-Fos expression was determined by immunohistochemistry. The expression of p-MAPKs was also determined by Western blot assay. RESULTS: Intrathecal injection of ephrinB1-Fc produced a dose- and time-dependent thermal and mechanical hyperalgesia, accompanied by the increase of spinal p-MAPKs and c-Fos expression. Immunofluorescence staining revealed that p-MAPKs colocalized with the neuronal marker (neuronal nuclei) and the astrocyte marker (glial fibrillary acidic protein). Inhibition of MAPKs prevented and reversed pain behaviors and the increase of spinal c-Fos expression induced by intrathecal injection of ephrinB1-Fc. Inhibition of EphBs receptors by intrathecal injection of EphB1-Fc reduced formalin-induced inflammation and chronic constrictive injury-induced neuropathic pain behaviors accompanied by decreased expression of spinal p-MAPKs and c-Fos protein. Furthermore, pretreatment with MK-801, an N-methyl-d-aspartate receptor antagonist, prevented behavioral hyperalgesia and activation of spinal MAPKs induced by intrathecal injection of ephrinB1-Fc. CONCLUSIONS: These results demonstrated that activation of MAPKs contributed to modulation of spinal nociceptive information related to ephrinBs/EphBs.


Assuntos
Efrina-B1/administração & dosagem , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Dor/enzimologia , Receptores da Família Eph/fisiologia , Animais , Butadienos/administração & dosagem , Efrina-B1/toxicidade , Hiperalgesia/induzido quimicamente , Hiperalgesia/enzimologia , Hiperalgesia/patologia , Mediadores da Inflamação/administração & dosagem , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/fisiologia , Mediadores da Inflamação/toxicidade , Injeções Espinhais , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nitrilas/administração & dosagem , Dor/induzido quimicamente , Dor/patologia , Medição da Dor/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA