Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Food Chem X ; 21: 101056, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38187946

RESUMO

Self-constructed water-in-oil emulsions can be stabilized by a natural pentacyclic triterpenoid, betulin. A higher betulin concentration (3%) results in smaller emulsion droplet sizes. Microscopy, confocal laser scanning microscopy and rheology indicate that the stabilizing mechanism is attributed to betulin crystals on the emulsion interface and within the continuous phase, thereby enabling excellent freeze/thaw and thermal stability. The betulin Pickering emulsion (1%) significantly increased betulin bioaccessibility (22.4%) compared to betulin alone (0.2%) and betulin-oil physical mixture (7.9%). A higher level of betulin at 3% leads to smaller emulsion particle size, potentially resulting in a greater surface area. This, in return, promotes a higher release of free fatty acids (FFA), contributing to the release and solubilization of betulin from emulsions. Additionally, it leads to the formation of micelles, further increasing betulin bioaccessibility (29.3%). This study demonstrates Pickering emulsions solely stabilized by phytochemical betulin provides an innovative way to improve its bioaccessibility.

2.
Foods ; 12(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37835309

RESUMO

Exploring the effect of bile salts on the properties of emulsion carriers containing hydrophobic bioactive compounds is particularly critical to understanding the stability and bioavailability of these hydrophobic bioactive compounds in the digestive process. In this study, the effects of bile salts on the stability and digestive characteristics of the ursolic acid (UA) self-stabilized water-in-oil (W/O) emulsion were investigated via static and dynamic (with or without enzyme) in vitro simulated digestive systems. The results showed that under the static system, the basic conditions had less interference, while the bile salts had a significant effect on the appearance and microstructure of the emulsion. The primary mechanism of emulsion instability is hydrophobic binding and depletion flocculation. Under the dynamic condition, it was found that the low concentrations of bile salts can promote the release amount and the rate of free fatty acids via displacement, while high concentrations of bile salts inhibit the decomposition of lipid, which may be related to the secondary coverage formed at the interface by the bile salts. These findings provide a theoretical basis for understanding the digestive behavior of the UA emulsion and its interaction with bile salts, which are conducive to developing and designing new emulsions to improve the bioaccessibility of UA.

3.
Nanotechnology ; 35(3)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37905427

RESUMO

Aim. The potential of olfactory ensheathing cells (OECs) as a cell therapy for spinal cord reconstruction and regeneration after injury has drawn significant attention in recent years. This study attempted to investigate the influences of nano-fibrous scaffolds on the growth status and functional properties of OECs.Methods.The ultra-morphology of the scaffolds was visualized using scanning electron microscopy (SEM). To culture OECs, donated cells were subcultured and identified with p75. Cell proliferation, apoptosis, and survival rates were measured through MTT assay, Annexin-V/PI staining, and p75 cell counting, respectively. The adhesion of cells cultured on scaffolds was observed using SEM. Additionally, the functions of OECs cultured on scaffolds were assessed by testing gene expression levels through real time polymerase chain reaction.Results.The electrospun type I collagen-based nano-fibers exhibited a smooth surface and uniform distribution. It was indicated that the proliferation and survival rates of OECs cultured on both randomly oriented and aligned type I collagen-based nano-fibrous scaffolds were higher than those observed in the collagen-coated control. Conversely, apoptosis rates were lower in cells cultured on scaffolds. Furthermore, OEC adhesion was better on the scaffolds than on the control. The expression levels of target genes were significantly elevated in cells cultured on scaffolds versus the controls.Conclusion.As a whole, the utilization of aligned collagen nanofibers has demonstrated significant advantages in promoting cell growth and improving cell function. These findings have important implications for the field of regenerative medicine and suggest that the approach may hold promise for the future therapeutic applications.


Assuntos
Nanofibras , Alicerces Teciduais , Colágeno Tipo I/genética , Células Cultivadas , Colágeno
4.
Adv Sci (Weinh) ; 10(27): e2303429, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37518771

RESUMO

Myocardial infarction (MI) is one of the leading causes of death and disability. Recently developed cardiac patches provide mechanical support and additional conductive paths to promote electrical signal propagation in the MI area to synchronize cardiac excitation and contraction. Cardiac patches based on conductive polymers offer attractive features; however, the modest levels of elasticity and high impedance interfaces limit their mechanical and electrical performance. These structures also operate as permanent implants, even in cases where their utility is limited to the healing period of tissue damaged by the MI. The work presented here introduces a highly conductive cardiac patch that combines bioresorbable metals and polymers together in a hybrid material structure configured in a thin serpentine geometry that yields elastic mechanical properties. Finite element analysis guides optimized choices of layouts in these systems. Regular and synchronous contraction of human induced pluripotent stem cell-derived cardiomyocytes on the cardiac patch and ex vivo studies offer insights into the essential properties and the bio-interface. These results provide additional options in the design of cardiac patches to treat MI and other cardiac disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Humanos , Implantes Absorvíveis , Miócitos Cardíacos , Polímeros/química , Tecnologia
5.
Nat Biomed Eng ; 7(11): 1514-1529, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37308586

RESUMO

Topographical cues on cells can, through contact guidance, alter cellular plasticity and accelerate the regeneration of cultured tissue. Here we show how changes in the nuclear and cellular morphologies of human mesenchymal stromal cells induced by micropillar patterns via contact guidance influence the conformation of the cells' chromatin and their osteogenic differentiation in vitro and in vivo. The micropillars impacted nuclear architecture, lamin A/C multimerization and 3D chromatin conformation, and the ensuing transcriptional reprogramming enhanced the cells' responsiveness to osteogenic differentiation factors and decreased their plasticity and off-target differentiation. In mice with critical-size cranial defects, implants with micropillar patterns inducing nuclear constriction altered the cells' chromatin conformation and enhanced bone regeneration without the need for exogenous signalling molecules. Our findings suggest that medical device topographies could be designed to facilitate bone regeneration via chromatin reprogramming.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Camundongos , Humanos , Animais , Cromatina , Constrição , Regeneração Óssea
6.
J Comput Aided Mol Des ; 37(7): 325-338, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269435

RESUMO

FGFR3 kinase mutations are associated with a variety of malignancies, but FGFR3 mutant inhibitors have rarely been studied. Furthermore, the mechanism of pan-FGFR inhibitors resistance caused by kinase domain mutations is still unclear. In this study, we try to explain the mechanism of drug resistance to FGFR3 mutation through global analysis and local analysis based on molecular dynamics simulation, binding free energy analysis, umbrella sampling and community network analysis. The results showed that FGFR3 mutations caused a decrease in the affinity between drugs and FGFR3 kinase, which was consistent with the reported experimental results. Possible mechanisms are that mutations affect drug-protein affinity by altering the environment of residues near the hinge region where the protein binds to the drug, or by affecting the A-loop and interfering with the allosteric communication networks. In conclusion, we systematically elucidated the underlying mechanism of pan-FGFR inhibitor resistance caused by FGFR3 mutation based on molecular dynamics simulation strategy, which provided theoretical guidance for the development of FGFR3 mutant kinase inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Mutação Puntual , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Humanos , Redes Comunitárias , Simulação de Dinâmica Molecular , Mutação , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Resistencia a Medicamentos Antineoplásicos/genética
7.
Food Chem ; 423: 136220, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37156140

RESUMO

Ursolic acid (UA), a pentacyclic triterpenoid, has gained attentions due to its various health-promoting benefits, but exhibits poor bioavailability. This could be enhanced by changing the food matrix of UA in which it is present. In this study, several UA systems were constructed to investigate the bioaccessibility and bioavailability of UA in combination with in vitro simulated digestion and Caco-2 cell models. The results showed that the bioaccessibility of UA was significantly improved after adding rapeseed oil. Caco-2 cell models showed that the UA-oil blend was more advantageous than UA emulsion in total absorption. The results indicate that the location of UA distribution in oil determines the ease of UA release into the mixed micellar phase. This paper brings a new research idea and basis for the design of improving the bioavailability of hydrophobic compounds.


Assuntos
Digestão , Alimentos , Humanos , Disponibilidade Biológica , Células CACO-2 , Ácido Ursólico
8.
Bioorg Chem ; 136: 106543, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119784

RESUMO

Curcumin is identified that it has the potential to treat Parkinson's disease (PD), but its instability limits its further application in clinic. The mono-carbonyl analogs of curcumin (MACs) with diketene structure can effectively improve its stability, but it is highly toxic. In the present study, a less cytotoxic and more stable monoketene MACs skeleton S2 was obtained, and a series of monoketene MACs were synthesized by combining 4-hydroxy-3­methoxy groups of curcumin. In the 6-OHDA-induced PD's model in-vitro, some compounds exhibited significant neurotherapeutic effect. The quantitative structure-activity relationship (QSAR) model established by the random forest algorithm (RF) for the cell viability rate of above compounds showed that the statistical results are good (R2 = 0.883507), with strong reliability. Among all compounds, the most active compound A4 played an important role in neuroprotection in the PD models both in vitro and in vivo by activating AKT pathway, and then inhibiting the apoptosis of cells caused by endoplasmic reticulum (ER) stress. In the PD model in-vivo, compound A4 significantly improved survival of dopaminergic neurons and the contents of neurotransmitters. It also enhanced the retention of nigrostriatal function which was better than the effect in the mice treated by Madopar, a classical clinical drug for PD. In summary, we screened out the compound A4 with high stability, less cytotoxic monoketene compounds. And these founding provide evidence that the compound A4 can protect dopaminergic neurons via activating AKT and subsequently suppressing ER stress in PD.


Assuntos
Curcumina , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Apoptose , Curcumina/farmacologia , Curcumina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reprodutibilidade dos Testes
9.
Sci Adv ; 9(8): eade4687, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812305

RESUMO

Chronic wounds, particularly those associated with diabetes mellitus, represent a growing threat to public health, with additional notable economic impacts. Inflammation associated with these wounds leads to abnormalities in endogenous electrical signals that impede the migration of keratinocytes needed to support the healing process. This observation motivates the treatment of chronic wounds with electrical stimulation therapy, but practical engineering challenges, difficulties in removing stimulation hardware from the wound site, and absence of means to monitor the healing process create barriers to widespread clinical use. Here, we demonstrate a miniaturized wireless, battery-free bioresorbable electrotherapy system that overcomes these challenges. Studies based on a splinted diabetic mouse wound model confirm the efficacy for accelerated wound closure by guiding epithelial migration, modulating inflammation, and promoting vasculogenesis. Changes in the impedance provide means for tracking the healing process. The results demonstrate a simple and effective platform for wound site electrotherapy.


Assuntos
Diabetes Mellitus , Terapia por Estimulação Elétrica , Camundongos , Animais , Implantes Absorvíveis , Impedância Elétrica , Cicatrização , Modelos Animais de Doenças , Inflamação
10.
Foods ; 12(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36673401

RESUMO

Extracting ursolic acid (UA) from plant resources using organic solvents is incompatible with food applications. To address this, in this study, 15 edible hydrophobic deep eutectic solvents (HDESs) were prepared to extract UA from apple peel, the extraction conditions were optimized, and the optimization strategies were compared. It was found that the solubility of UA in the HDESs can be 9 times higher than the traditional solvent such as ethanol. The response surface optimization concluded that temperature had the greatest effect on the extraction and the optimized test conditions obtained as follows: temperature of 49 °C, time of 32 min, solid-liquid ratio of 1:16.5 g/mL, respectively. Comparing the response surface methodology (RSM) and artificial neural networks (ANN), it was concluded that ANN has more accurate prediction ability than RSM. Overall, the HDESs are more effective and environmentally friendly than conventional organic solvents to extract UA. The results of this study will facilitate the further exploration of HDES in various food and pharmaceutical applications.

11.
J Enzyme Inhib Med Chem ; 37(1): 2357-2369, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36039017

RESUMO

Curcumin is a natural medicine with a wide range of anti-tumour activities. However, due to ß-diketone moiety, curcumin exhibits poor stability and pharmacokinetics which significantly limits its clinical applications. In this article, two types of dicarbonyl curcumin analogues with improved stability were designed through the calculation of molecular stability by density functional theory. Twenty compounds were synthesised, and their anti-tumour activity was screened. A plurality of analogues had significantly stronger activity than curcumin. In particular, compound B2 ((2E,2'E)-3,3'-(1,4-phenylene)bis(1-(2-chlorophenyl)prop-2-en-1-one)) exhibited excellent anti-lung cancer activity in vivo and in vitro. In addition, B2 could upregulate the level of reactive oxygen species in lung cancer cells, which in turn activated the endoplasmic reticulum stress and led to cell apoptosis and pyroptosis. Taken together, curcumin analogue B2 is expected to be a novel candidate for lung cancer treatment with improved chemical and biological characteristics.


Assuntos
Antineoplásicos , Curcumina , Neoplasias Pulmonares , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Diarileptanoides/farmacologia , Humanos , Neoplasias Pulmonares/patologia , Piroptose , Espécies Reativas de Oxigênio/metabolismo
12.
J Med Chem ; 65(5): 3798-3813, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35229610

RESUMO

A series of 5-aryl-2-amino-imidazothiadiazole (ITD) derivatives were identified by a phenotype-based high-throughput screening using a blood stage Plasmodium falciparum (Pf) growth inhibition assay. A lead optimization program focused on improving antiplasmodium potency, selectivity against human kinases, and absorption, distribution, metabolism, excretion, and toxicity properties and extended pharmacological profiles culminated in the identification of INE963 (1), which demonstrates potent cellular activity against Pf 3D7 (EC50 = 0.006 µM) and achieves "artemisinin-like" kill kinetics in vitro with a parasite clearance time of <24 h. A single dose of 30 mg/kg is fully curative in the Pf-humanized severe combined immunodeficient mouse model. INE963 (1) also exhibits a high barrier to resistance in drug selection studies and a long half-life (T1/2) across species. These properties suggest the significant potential for INE963 (1) to provide a curative therapy for uncomplicated malaria with short dosing regimens. For these reasons, INE963 (1) was progressed through GLP toxicology studies and is now undergoing Ph1 clinical trials.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antagonistas do Ácido Fólico/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Camundongos , Camundongos SCID , Plasmodium falciparum
13.
J Sci Food Agric ; 102(11): 4759-4769, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35218222

RESUMO

BACKGROUND: Phytosterols are considered to be one of the most promising gelators for obtaining oleogel because of their additional health benefits and natural coexist with vegetable oils. Previous studies have confirmed that individual phytosterols are not capable of structuring vegetable oils unless they act synergistically with other components. However, based on the self-assembly properties of stigmasterol (ST) in organic solvents, we speculate that it can also structure vegetable oils as a gelator alone. RESULTS: For the first time, the present study confirmed the feasibility of using ST alone as a gelator for structuring of vegetable oils, including rapeseed oil (RSO), olive oil (OLO) and flaxseed oil (FSO). RSO had the lowest ST gelation concentration (4%, w/w), and the oil-binding capacity and firmness value of the oleogels were the highest. The rheological results showed that all the samples were gelatinous (G' > G″). The results of differential scanning calorimeter and X-ray diffraction further confirmed that the properties of RSO-based oleogels are superior to those prepared by OLO and FSO. The microscopic results also confirmed that the crystal structure of RSO oleogels was more uniform, smaller and more densely distributed. CONCLUSION: The structural properties of the oleogels were positively correlated with the ST concentration, and various analysis indicators showed that the performance of the oleogel based on RSO was better than that of OLO and FSO. In summary, the present study used ST as a gelator to successfully prepare oleogels with excellent properties, which provides a feasible reference for researchers in related fields. © 2022 Society of Chemical Industry.


Assuntos
Fitosteróis , Estigmasterol , Compostos Orgânicos/química , Óleos de Plantas/química
14.
Adv Nanobiomed Res ; 1(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34870281

RESUMO

Self-assembling filomicelles (FM) are of great interest to nanomedicine due to their structural flexibility, extensive systemic circulation time, and amenability to unique "cylinder-to-sphere" morphological transitions. However, current fabrication techniques for FM self-assembly are highly variable and difficult to scale. Here, we demonstrate that tetrablock copolymers composed of poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) diblocks linked by a pi-stacking perylene bisimide (PBI) moiety permit rapid, scalable, and facile assembly of FM via the flash nanoprecipitation (FNP) method. Co-assembling the tetrablocks and PEG-b-PPS diblocks at different molar ratios resulted in mixed PBI-containing FM (mPBI-FM) with tunable length and flexibility. The flexibility of mPBI-FM can be optimized to decrease uptake by macrophages in vivo, leading to increased circulation time versus (-)PBI-FM without PBI tetrablocks after intravenous administration in mice. While PEG-b-PPS diblocks form FM within a narrow range of hydrophilic weight fractions, incorporation of pi-stacking PBI groups expanded this range to increase favorability of FM assembly. Furthermore, the aggregation-dependent fluorescence of PBI shifted during oxidation-induced "cylinder-to-sphere" transitions of mPBI-FM into micelles, resulting in a distinct emission wavelength for filamentous versus spherical nanostructures. Thus, incorporation of pi-stacking allows for rapid, scalable assembly of FM with tunable flexibility and stability for theranostic and nanomedicine applications.

15.
Pain Res Manag ; 2021: 6493712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721749

RESUMO

OBJECTIVE: To introduce a modified transverse process-pedicle puncture technique applied to unilateral extrapedicular percutaneous vertebroplasty (PVP) for the treatment of osteoporotic lumbar vertebral compression fractures. METHODS: A retrospective study was performed on 91 patients with osteoporotic vertebral compression fractures (OVCFs) who underwent unilateral extrapedicular PVP from June 2016 to September 2018. Lumbar and back pain was assessed through the visual analogue scale (VAS). Function recovery was assessed through the Oswestry disability index (ODI). Radiologic outcomes were assessed mainly on the basis of bone cement distribution and anterior vertebral height. RESULTS: A total of 101 fractured vertebrae were successfully treated using the extrapedicular technique without any recognized clinical complications. The postoperative VAS and ODI values were significantly lower than the corresponding preoperative values (P < 0.01). Radiologic outcomes in all fractured vertebrae showed that the diffusion of bone cement could exceed the midline of the vertebral body. There was no significant difference between preoperative and postoperative anterior vertebral heights (P < 0.05). CONCLUSION: The modified transverse process-pedicle approach applied to unilateral extrapedicular percutaneous vertebroplasty is a simple, safe, and effective surgical method.


Assuntos
Fraturas por Compressão , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Vertebroplastia , Fraturas por Compressão/diagnóstico por imagem , Fraturas por Compressão/cirurgia , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/cirurgia , Estudos Retrospectivos , Fraturas da Coluna Vertebral/cirurgia , Resultado do Tratamento
16.
Clin Sci (Lond) ; 135(22): 2541-2558, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34730176

RESUMO

OBJECTIVE: Regulated in development and DNA damage responses-1 (REDD1) is a conserved and ubiquitous protein, which is induced in response to multiple stimuli. However, the regulation, function and clinical relevance of REDD1 in Helicobacter pylori-associated gastritis are presently unknown. APPROACH: Immunohistochemistry, real-time PCR and Western blot analyses were performed to examine the levels of REDD1 in gastric samples from H. pylori-infected patients and mice. Gastric tissues from Redd1-/- and wildtype (WT, control) mice were examined for inflammation. Gastric epithelial cells (GECs), monocytes and T cells were isolated, stimulated and/or cultured for REDD1 regulation and functional assays. RESULTS: REDD1 was increased in gastric mucosa of H. pylori-infected patients and mice. H. pylori induced GECs to express REDD1 via the phosphorylated cytotoxin associated gene A (cagA) that activated MAPKp38 pathway to mediate NF-κB directly binding to REDD1 promoter. Human gastric REDD1 increased with the severity of gastritis, and mouse REDD1 from non-marrow chimera-derived cells promoted gastric inflammation that was characterized by the influx of MHCII+ monocytes. Importantly, gastric inflammation, MHCII+ monocyte infiltration, IL-23 and IL-17A were attenuated in Redd1-/- mice. Mechanistically, REDD1 in GECs regulated CXCL1 production, which attracted MHCII+ monocytes migration by CXCL1-CXCR2 axis. Then H. pylori induced MHCII+ monocytes to secrete IL-23, which favored IL-17A-producing CD4+ cell (Th17 cell) polarization, thereby contributing to the development of H. pylori-associated gastritis. CONCLUSIONS: The present study identifies a novel regulatory network involving REDD1, which collectively exert a pro-inflammatory effect within gastric microenvironment. Efforts to inhibit this REDD1-dependent pathway may prove valuable strategies in treating of H. pylori-associated gastritis.


Assuntos
Citocinas/metabolismo , Mucosa Gástrica/microbiologia , Gastrite/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Células Th17/microbiologia , Fatores de Transcrição/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Gastrite/imunologia , Gastrite/metabolismo , Infecções por Helicobacter/complicações , Helicobacter pylori/imunologia , Helicobacter pylori/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Fenótipo , Fosforilação , Células Th17/imunologia , Células Th17/metabolismo , Fatores de Transcrição/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Biomed Pharmacother ; 142: 111967, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34467896

RESUMO

miR-34, whose mimic was used on phase I clinical trial, has been extensively reported since its dysfunction in various cancers including non-small-cell lung cancer (NSCLC). However, the roles of miR-34 family members in the progression of lung squamous carcinoma (SCC) in patients who have occupational-exposure experience are unclear yet. Here, we comprehensively investigated the expression levels of miR-34 family members in SCC patients and compared the roles of them in SCC in vitro and vivo. The results showed that the average levels of miR-34a and miR-34b/c were decreased in patients. The analysis of miR-34a to miR-34b/c levels in patients graded different stages or metastases or recurrence showed that miR-34b/c was reduced earlier and more significantly than miR-34a. In vitro assays demonstrated that both miR-34a and miR-34b/c inhibits SCC cells proliferation, migration and invasion via Notch1 pathway, while miR-34b/c effects more than miR-34a does. As miR-34a was significantly decreased in cancer recurrence, the further analysis of relationship between miR-34a and stem cell adhesion molecular CD44 showed that miR-34a was significantly correlated with CD44 levels in patients. Knockdown of CD44 significantly blocked miR-34a mediated inhibition of cell migration and invasion. Treating the purified CD44hi cells with miR-34 overexpression lentivirus inhibited the tumor outgrowth. By contrast, anti-miR-34 facilitated tumor development of CD44low cells. Our study showed that miR-34 family members are negative regulator for SCC development, even though the inhibition is mediated by multiple and complicated signal pathways, which provides theoretical basis for SCC treatment and a biomarker candidate for SCC prognosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Receptores de Hialuronatos/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos SCID , Estadiamento de Neoplasias , Exposição Ocupacional/efeitos adversos , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Bioorg Chem ; 114: 105080, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34225164

RESUMO

Antioxidants with high efficacy and low toxicity have the potential to treat cerebral ischemia reperfusion injury (CIRI). Dienone monocarbonyl curcumin analogs (DMCA) capable of overcoming the instability and pharmacokinetic defects of curcumin possess notable antioxidant activity but are found to be significantly toxic. In this study, a novel skeleton of the monoenone monocarbonyl curcumin analogue sAc possessing reduced toxicity and improved stability was designed on the basis of the DMCA skeleton. Moreover, 32 sAc analogs were obtained by applying a green, simple, and economical synthetic method. Multiple sAc analogs with an antioxidant protective effect in PC12 cells were screened using an H2O2-induced oxidative stress damage model, and quantitative evaluation of structure-activity relationship (QSAR) model with regression coefficient of R2 = 0.918921 was built through random forest algorithm (RF). Among these compounds, the optimally active compound sAc15 elicited a potent protective effect on cell growth of PC12 cells by effectively eliminating ROS generation in response to oxidative stress injury by activating the Nrf2/HO-1 antioxidant signaling pathway. In addition, sAc15 exhibited good protection against CIRI in the mice middle cerebral artery occlusion (MCAO) model. In this paper, we provide a novel class of antioxidants and a potential compound for stroke treatment.


Assuntos
Antioxidantes/farmacologia , Curcumina/farmacologia , Química Verde , Infarto da Artéria Cerebral Média/tratamento farmacológico , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/síntese química , Antioxidantes/química , Células Cultivadas , Curcumina/análogos & derivados , Curcumina/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Ratos , Traumatismo por Reperfusão/patologia , Relação Estrutura-Atividade
19.
Artigo em Chinês | MEDLINE | ID: mdl-34304486

RESUMO

Objective:To investigate the clinical effect of lateral cervical approach in the treatment of cervical lymphatic tuberculosis complicated with parapharyngeal space abscess. Methods:A total of 10 patients with cervical lymph node tuberculosis complicated with tuberculous abscess in parapharyngeal space were treated. Surgery was performed using a transcervical approach. The operation time and blood loss were recorded. The level of ESR, C-reactive protein(CRP), VAS score and the rating of Kubota drinking test before and 2 weeks after operation were compared. The incision healing, symptoms of tuberculosis poisoning, and the CT findings of the cervical lesions were compared before operation, 2 weeks after operation and at the last follow-up. Results:The operation time ranged from 65 to 130 min with an average of (99.00±21.45) min. The intraoperative blood loss ranged from 100 to 250 mL with an average of (155.00±43.78) mL. The average pre-and post-operative level of ESR was (67.60±21.94) mm/1h and (30.30±13.76) mm/1h, respectively(U=5.500, P<0.01); The average pre-and post-operative level of CRP was (69.70±31.13) mg/L and (42.40±19.70) mg/L, respectively(U=22.500, P<0.05); The average pre-and post-operative VAS score was (5.60±1.26) points and (2.50±1.27) points, respectively(U=4.500, P<0.01). As for Kubota drinking test, the rating was between 1-2 two weeks postoperatively. After relieving the compression, there was no obvious choking and coughing in drinking water. During the follow-up period (range: 6-24 months), the surgical wound healed completely, and the symptoms of systemic tuberculosis poisoning disappeared. No obvious residual cavity or effusion was found in the parapharyngeal space by CT examination, nor was any protruding tissue in oropharynx. The edema of soft tissue surrounding the operational area disappeared, and the enlarged lymph nodes were significantly reduced. No sign of liquefaction, necrosis, suppuration or recurrence was observed. Conclusion:Surgery using transcervical approach effective in treating cervical lymph node tuberculosis with parapharyngeal space abscess.


Assuntos
Doenças Faríngeas , Tuberculose dos Linfonodos , Abscesso , Humanos , Pescoço , Espaço Parafaríngeo , Estudos Retrospectivos , Resultado do Tratamento , Tuberculose dos Linfonodos/complicações
20.
Nanoscale Horiz ; 6(5): 393-400, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33884386

RESUMO

A significant barrier to the application of nanoparticles for precision medicine is the mononuclear phagocyte system (MPS), a diverse population of phagocytic cells primarily located within the liver, spleen and lymph nodes. The majority of nanoparticles are indiscriminately cleared by the MPS via macropinocytosis before reaching their intended targets, resulting in side effects and decreased efficacy. Here, we demonstrate that the biodistribution and desired tissue accumulation of targeted nanoparticles can be significantly enhanced by co-injection with polymeric micelles containing the actin depolymerizing agent latrunculin A. These macropinocytosis inhibitory nanoparticles (MiNP) were found to selectively inhibit non-specific uptake of a second "effector" nanoparticle in vitro without impeding receptor-mediated endocytosis. In tumor bearing mice, co-injection with MiNP in a single multi-nanoparticle formulation significantly increased the accumulation of folate-receptor targeted nanoparticles within tumors. Furthermore, subcutaneous co-administration with MiNP allowed effector nanoparticles to achieve serum levels that rivaled a standard intravenous injection. This effect was only observed if the effector nanoparticles were injected within 24 h following MiNP administration, indicating a temporary avoidance of MPS cells. Co-injection with MiNP therefore allows reversible evasion of the MPS for targeted nanoparticles and presents a previously unexplored method of modulating and improving nanoparticle biodistribution following subcutaneous administration.


Assuntos
Nanopartículas , Neoplasias , Animais , Injeções Subcutâneas , Camundongos , Sistema Fagocitário Mononuclear , Neoplasias/tratamento farmacológico , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA