Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Adv Res ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492734

RESUMO

INTRODUCTION: Our previous study showed that the abscisic acid receptor lanthionine synthetase C-like 2 (LanCL2) is a significant prognostic factor for overall survival in young glioblastoma patients. However, the role of LanCL2 in glioblastoma remains unclear yet. OBJECTIVES: This study aims to investigate the role of LanCL2 in regulating in-vitro cell invasion and in-vivo tumor progression of glioblastoma and its underlying mechanism. METHODS: Tyrosine 198 or 295 residue of LanCL2 was mutated using site-directed mutagenesis to block its phosphorylation. The role of LanCL2 in glioblastoma was investigated using transwell or 3D invasion assay, matrix degradation assay and intracranial xenograft model. RESULTS: This study showed that nuclear transport of LanCL2 was enhanced by overexpression of LanCL2 or its ligand abscisic acid in glioblastoma cells. Knockdown of LanCL2 suppressed migration, invasion and invadopodia formation of glioblastoma cells, whereas overexpression of wild-type LanCL2 enhanced them. Blocking of Tyr295 residue phosphorylation of LanCL2 impeded its nuclear transport, retarded glioblastoma cell motility and invadopodia formation, and deceased the phosphorylation of Cortactin and STAT3. c-Met was identified as the upstream tyrosine kinase of Tyr295 residue of LanCL2, and inhibition of c-Met markedly suppressed the nuclear transport of LanCL2. Moreover, overexpression of wild-type LanCL2 significantly promoted orthotopic tumor growth of glioblastoma in vivo and led to poor survival of mice with median survival time of 33.5 days, whereas Tyr295 mutation rescued it with median survival time of 49 days. CONCLUSION: Our findings suggested that Tyr295 phosphorylation is crucial to the activation and nuclear transport of LanCL2, as well as invadopodia formation and tumor progression of glioblastoma, providing the evidence of a novel signaling axis c-Met/LanCL2/STAT3/Cortactin and the first observation of the importance of Tyr295 phosphorylation to LanCL2.

2.
Nat Commun ; 14(1): 7615, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993459

RESUMO

Motivated by the high-performance solid-state lithium batteries enabled by lithium superionic conductors, sodium superionic conductor materials have great potential to empower sodium batteries with high energy, low cost, and sustainability. A critical challenge lies in designing and discovering sodium superionic conductors with high ionic conductivities to enable the development of solid-state sodium batteries. Here, by studying the structures and diffusion mechanisms of Li-ion versus Na-ion conducting solids, we reveal the structural feature of face-sharing high-coordination sites for fast sodium-ion conductors. By applying this feature as a design principle, we discover a number of Na-ion conductors in oxides, sulfides, and halides. Notably, we discover a chloride-based family of Na-ion conductors NaxMyCl6 (M = La-Sm) with UCl3-type structure and experimentally validate with the highest reported ionic conductivity. Our findings not only pave the way for the future development of sodium-ion conductors for sodium batteries, but also consolidate design principles of fast ion-conducting materials for a variety of energy applications.

4.
Clin Transl Immunology ; 12(6): e1452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333051

RESUMO

Objectives: Intestinal mucositis is the major side effect during abdominal or pelvic radiotherapy, but the underlying immunogen remains to be further characterised and few radioprotective agents are available. This study investigated the role of dsDNA-triggered inflammasomes in intestinal mucositis during radiotherapy. Methods: Pro-inflammatory cytokines were detected by ELISA. Radiation-induced intestinal injury in mice was analyzed by means of survival curves, body weight, HE staining of intestines, and intestinal barrier integrity. Western blot, immunofluorescence staining, co-immunoprecipitation assay and flow cytometry were used to investigate the regulatory role of dsDNA on inflammasomes. Results: Here, we show that a high level of IL-1ß and IL-18 is associated with diarrhoea in colorectal cancer (CRC) patients during radiotherapy, which accounts for intestinal radiotoxicity. Subsequently, we found that the dose-dependently released dsDNA from the intestinal epithelial cells (IECs) serves as the potential immunogenic molecule for radiation-induced intestinal mucositis. Our results further indicate that the released dsDNA transfers into the macrophages in an HMGB1/RAGE-dependent manner and then triggers absent in melanoma 2 (AIM2) inflammasome activation and the IL-1ß and IL-18 secretion. Finally, we show that the FDA-approved disulfiram (DSF), a newly identified inflammasome inhibitor, could mitigate intestinal radiotoxicity by controlling inflammasome. Conclusion: These findings indicate that the extracellular self-dsDNA released from the irradiated IECs is a potential immunogen to stimulate immune cells and trigger the subsequent intestinal mucositis, while blunting the dsDNA-triggered inflammasome in macrophages may represent an exciting therapeutic strategy for side effects control during abdominal radiotherapy.

5.
Nat Commun ; 14(1): 2986, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225679

RESUMO

Understanding the electrochemical deposition of metal anodes is critical for high-energy rechargeable batteries, among which solid-state lithium metal batteries have attracted extensive interest. A long-standing open question is how electrochemically deposited lithium-ions at the interfaces with the solid-electrolytes crystalize into lithium metal. Here, using large-scale molecular dynamics simulations, we study and reveal the atomistic pathways and energy barriers of lithium crystallization at the solid interfaces. In contrast to the conventional understanding, lithium crystallization takes multi-step pathways mediated by interfacial lithium atoms with disordered and random-closed-packed configurations as intermediate steps, which give rise to the energy barrier of crystallization. This understanding of multi-step crystallization pathways extends the applicability of Ostwald's step rule to interfacial atom states, and enables a rational strategy for lower-barrier crystallization by promoting favorable interfacial atom states as intermediate steps through interfacial engineering. Our findings open rationally guided avenues of interfacial engineering for facilitating the crystallization in metal electrodes for solid-state batteries and can be generally applicable for fast crystal growth.

6.
Aging Dis ; 14(4): 1292-1310, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163426

RESUMO

Due to its extremely complex pathogenesis, no effective drugs to prevent, delay progression, or cure Alzheimer's disease (AD) exist at present. The main pathological features of AD are senile plaques composed of ß-amyloid, neurofibrillary tangles formed by hyperphosphorylation of the tau protein, and degeneration or loss of neurons in the brain. Many risk factors associated with the onset of AD, including gene mutations, aging, traumatic brain injury, endocrine and cardiovascular diseases, education level, and obesity. Growing evidence points to chronic stress as one of the major risk factors for AD, as it can promote the onset and development of AD-related pathologies via a mechanism that is not well known. The use of murine stress models, including restraint, social isolation, noise, and unpredictable stress, has contributed to improving our understanding of the relationship between chronic stress and AD. This review summarizes the evidence derived from murine models on the pathological features associated with AD and the related molecular mechanisms induced by chronic stress. These results not only provide a retrospective interpretation for understanding the pathogenesis of AD, but also provide a window of opportunity for more effective preventive and identifying therapeutic strategies for stress-induced AD.

7.
Angew Chem Int Ed Engl ; 62(15): e202215544, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36749663

RESUMO

The frustration in super-ionic conductors enables their exceptionally high ionic conductivities, which are desired for many technological applications including batteries and fuel cells. A key challenge in the study of frustration is the difficulties in analyzing a large number of disordered atomistic configurations. Using lithium super-ionic conductors as model systems, we propose and demonstrate the density of atomistic states (DOAS) analytics to quantitatively characterize the onset and degree of disordering, reveal the energetics of local disorder, and elucidate how the frustration enhances diffusion through the broadening and overlapping of the energy levels of atomistic states. Furthermore, material design strategies aided by the DOAS are devised and demonstrated for new super-ionic conductors. The DOAS is generally applicable analytics for unraveling fundamental mechanisms in complex atomistic systems and guiding material design.

8.
Exp Appl Acarol ; 88(1): 97-111, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36097185

RESUMO

Tick-borne diseases like Rickettsia, Anaplasma and Ehrlichia are widespread infectious zoonoses that threaten the health of both humans and animals worldwide. Ticks and their hosts, such as hedgehogs, can play a crucial role in transmitting tick-borne diseases and the cycle of Rickettsia. To investigate the presence and identity of Rickettsia in hedgehogs and hedgehog-attached ticks in Xuyi County, Southeast China, 114 ticks were collected from 45 hedgehogs captured totally. Via morphological and molecular methods, all these ticks were identified as two species: Haemaphysalis flava (110/114, 96.5%) and Haemaphysalis longicornis (4/114, 3.5%). Rickettsia spp. were genotypically characterized by PCR targeting rrs, gltA, ompA, ompB, and sca4 gene fragments. The prevalence of spotted fever group rickettsiae (SFGR) infection found in hedgehogs and ticks was 17.8% (8/45) and 78.1% (89/114), respectively. Phylogenetic analyses demonstrated that those Rickettsia spp. belong to two species: Rickettsia heilongjiangensis (R. heilongjiangensis XY-1) and a potential new species, Candidatus Rickettsia xuyiensis XY-2. The present study gave the first evidence of R. heilongjiangensis and Candidatus R. xuyiensis in ticks and hedgehogs of Southeast China. Our findings suggest that hedgehogs might be involved in the natural transmission cycle of Rickettsia species.


Assuntos
Ixodes , Ixodidae , Rickettsia , Rickettsiose do Grupo da Febre Maculosa , Doenças Transmitidas por Carrapatos , Humanos , Animais , Ouriços , Filogenia , Rickettsia/genética , Rickettsiose do Grupo da Febre Maculosa/epidemiologia , Rickettsiose do Grupo da Febre Maculosa/veterinária , Rickettsiose do Grupo da Febre Maculosa/microbiologia , Ixodidae/microbiologia , China
10.
ACS Appl Mater Interfaces ; 14(2): 2908-2917, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985250

RESUMO

Electrocatalytic water splitting for hydrogen production is an efficient, clean, and sustainable strategy to solve energy and environmental problems. As the important alternative materials for noble metals (Pt, Ir, etc.), two-dimensional (2D) materials have been widely applied for electrocatalysis, although the practical performance is restricted by low carrier mobility and slow reaction kinetics. Here, we adopt the strategy of Au nanoparticle modification to achieve the enhanced hydrogen evolution reaction (HER) performance of InSe nanosheets. Experimental results prove that the HER performance of InSe nanosheets is significantly enhanced under the modification of Au nanoparticles, and the overpotential (392 mV) and Tafel slope (59 mV/dec) are significantly reduced compared to sole InSe nanosheets (580 mV and 148.2 mV/dec). First-principles calculations have found that the InSe/Au system exhibits metallicity because the free electrons provided by the Au particles are injected into the InSe, thereby improving its conductivity. The difference charge density and localized charge density of InSe/Au show that Au nanoparticle loading can induce the formation of Au-Se electron-transfer channels with electrovalent bond characteristics, which effectively promotes the charge transfer. Meanwhile, the standard free-energy calculation of the HER process shows that the InSe/Au heterojunction has a H* adsorption/desorption Gibbs free energy [(|ΔGH*|) = 0.59 eV] closer to the optimal value. This study reveals the theoretical mechanism of metal modification to improve the performance of electrocatalytic HER and is expected to motivate the development of a new strategy for enhancing the catalytic activity of 2D semiconductor materials.

11.
Burns Trauma ; 10: tkab043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35071650

RESUMO

Radiotherapy is one of the main cancer treatments, but it may damage normal tissue and cause various side effects. At present, radioprotective agents used in clinics have side effects such as nausea, vomiting, diarrhea and hypotension, which limit their clinical application. It has been found that exosomes play an indispensable role in radiation injury. Exosomes are lipid bilayer vesicles that carry various bioactive substances, such as proteins, lipids and microRNA (miRNA), that play a key role in cell-to-cell communication and affect tissue injury and repair. In addition, studies have shown that radiation can increase the uptake of exosomes in cells and affect the composition and secretion of exosomes. Here, we review the existing studies and discuss the effects of radiation on exosomes and the role of exosomes in radiation injury, aiming to provide new insights for the treatment of radiation injury.

12.
Photochem Photobiol ; 98(4): 935-944, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34687567

RESUMO

IR-780 is a lipophilic dye with excellent optical and tumor imaging properties for early tumor diagnostics. Although the mechanism of tumor targeting has not been fully identified, the view that serum albumin plays an important role in tumor accumulation has been recognized. Here, the mechanism of the interaction between IR-780 and HSA was studied to explore the effect of albumin on its tumor targeting properties. Data demonstrate that IR-780 can be tightly adsorbed by HSA at a ratio of 1:1 to form a noncovalent complex, which exhibits significant improvement in the near-infrared fluorescence imaging and tumor diagnosis capacity. During this process, the endogenous fluorescence and esterase activity of HSA are both partially inhibited by IR-780, and the α-helical content of HSA slightly increases. Molecular docking simulation displays that the binding site of IR-780 on HSA is between subdomains IIA and IIB. These results indicate that HSA is an important factor to mediate the optical performance of IR-780, giving it higher tumor diagnosis capability.


Assuntos
Neoplasias , Albumina Sérica Humana , Sítios de Ligação , Dicroísmo Circular , Humanos , Indóis , Simulação de Acoplamento Molecular , Neoplasias/diagnóstico por imagem , Ligação Proteica , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Espectrometria de Fluorescência , Termodinâmica
13.
Stem Cells Transl Med ; 10(12): 1637-1649, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34520124

RESUMO

Cutaneous wound healing requires intricate synchronization of several key processes. Among them, local nerve regeneration is known to be vitally important for proper repair. However, the underlying mechanisms of local nerve regeneration are still unclear. Fibroblasts are one of the key cell types within the skin whose role in local nerve regeneration has not been extensively studied. In our study, we found skin fibroblasts were in tight contact with regenerated nerves during wound healing, while rare interactions were shown under normal circumstances. Moreover, skin fibroblasts surrounding the nerves were shown to be activated and reprogrammed to exhibit neural cell-like properties by upregulated expressing inhibitor of DNA binding 1 (ID1) and ID3. Furthermore, we identified the regulation of integrin α6 (Itga6) by ID1/ID3 in fibroblasts as the mechanism for axon guidance. Accordingly, transplantation of the ID1/ID3-overexpressing fibroblasts or topical injection of ID1/ID3 lentivirus significantly promoted local nerve regeneration and wound healing following skin excision or sciatic nerve injury. Therefore, we demonstrated a new role for skin fibroblasts in nerve regeneration following local injury by directly contacting and guiding axon regrowth, which might hold therapeutic potential in peripheral nerve disorders and peripheral neuropathies in relatively chronic refractory wounds.


Assuntos
Proteína 1 Inibidora de Diferenciação , Proteínas Inibidoras de Diferenciação , Cicatrização , Fibroblastos/metabolismo , Humanos , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Integrina alfa6/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Neuropatia Ciática/metabolismo , Cicatrização/fisiologia
14.
ACS Appl Mater Interfaces ; 13(39): 46213-46224, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34546708

RESUMO

Acute ischemic stroke has become the major cause of mortality and disability worldwide. Following ischemic stroke, the reperfusion injury is mainly mediated by the burst of reactive oxygen and nitrogen species (RONS). Therefore, blocking the excessive production or removing RONS holds great promise as a potential therapeutic strategy. Herein, we developed a Co-doped Fe3O4 nanozyme that is capable of scavenging H2O2, O2•-, •NO, and ONOO- in vitro and in vivo and provides neuroprotection against ischemic stroke. In vitro experiments showed that pre-incubation with the Co-Fe3O4 nanozyme could prevent neurotoxicity and neuroinflammation induced by H2O2 or lipopolysaccharide, respectively, in HT22 cells. After intravenous administration, the Co-Fe3O4 nanozyme showed no signs of toxicity in peripheral organs of C57BL/6J mice, even after prolonged delivery for 4 weeks. In permanent photothrombotic stroke model and transient middle cerebral artery occlusion stroke model, the Co-Fe3O4 nanozyme specifically accumulated in the infarct rim at 72 h post-stroke and was endocytosed by neurons, astrocytes, microglia, and endothelial cells. Importantly, the Co-Fe3O4 nanozyme delivery reduced the infarct volume in both stroke models. The observation that the Co-Fe3O4 nanozyme was efficacious in two well-characterized ischemic stroke models provides strong evidence that it represents a powerful tool for targeting oxidative and nitrosative stress in the ischemic brain.


Assuntos
Sequestradores de Radicais Livres/uso terapêutico , AVC Isquêmico/tratamento farmacológico , Nanopartículas de Magnetita/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Catálise , Linhagem Celular , Cobalto/química , Cobalto/toxicidade , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/toxicidade , Lipopolissacarídeos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/tratamento farmacológico , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/toxicidade , Oxirredução , Espécies Reativas de Nitrogênio/química , Espécies Reativas de Oxigênio/química
15.
Redox Biol ; 46: 102082, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343908

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by excessive deposition of extracellular matrix in the lung with fibroblast-to-myofibroblast transition, leading to chronically compromising lung function and death. However, very little is known about the metabolic alterations of fibroblasts in IPF, and there is still a lack of pharmaceutical agents to target the metabolic dysregulation. Here we show a glycolysis upregulation and fatty acid oxidation (FAO) downregulation in fibroblasts from fibrotic lung, and perturbation of glycolysis and FAO affects fibroblasts transdifferentiation. In addition, there is a significant accumulation of succinate both in fibrotic lung tissues and myofibroblasts, where succinate dehydrogenase (SDH) operates in reverse by reducing fumarate to succinate. Then succinate contributes to glycolysis upregulation and FAO downregulation by stabilizing HIF-1α, which promotes the development of lung fibrosis. In addition, we identify a near-infrared small molecule dye, IR-780, as a targeting agent which stimulates mild inhibition of succinate dehydrogenase subunit A (SDHA) in fibroblasts, and which inhibits TGF-ß1 induced SDH and succinate elevation, then to prevent fibrosis formation and respiratory dysfunction. Further, enhanced cell retention of IR-780 is shown to promote severe inhibition of SDHA in myofibroblasts, which may contribute to excessive ROS generation and selectively induces myofibroblasts to apoptosis, and then therapeutically improves established lung fibrosis in vivo. These findings indicate that targeting metabolic dysregulation has significant implications for therapies aimed at lung fibrosis and succinate dehydrogenase is an exciting new therapeutic target to treat IPF.


Assuntos
Fibrose Pulmonar Idiopática , Preparações Farmacêuticas , Bleomicina/toxicidade , Fibroblastos , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Pulmão , Miofibroblastos , Succinato Desidrogenase/genética
16.
Front Pharmacol ; 12: 608637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935703

RESUMO

Diabetic bladder dysfunction (DBD) afflicts nearly half of diabetic patients, but effective treatment is lacking. In this study, IR-61, a novel heptamethine cyanine dye with potential antioxidant effects, was investigated to determine whether it can alleviate DBD. Rats were intraperitoneally injected with IR-61 or vehicle after diabetes was induced with streptozotocin. Before evaluating the effects of IR-61 in improving DBD by filling cystometry, we detected its distribution in tissues and subcellular organelles by confocal fluorescence imaging. Near infrared (NIR) imaging showed that IR-61 could accumulate at high levels in the bladders of diabetic rats, and confocal images demonstrated that it was mainly taken up by bladder smooth muscle cells (BSMCs) and localized in mitochondria. Then, filling cystometry illustrated that IR-61 significantly improved the bladder function of diabetic rats. The histomorphometry results showed that IR-61 effectively mitigated the pathological changes in bladder smooth muscle (BSM) in diabetic rats. Furthermore, IR-61 remarkably reduced the number of apoptotic BSMCs and the unfavorable expression of proteins related to the mitochondrial apoptotic pathway (Bcl-2, BAX, Cytochrome C, and cleaved Caspase-9) in diabetic rats. Moreover, the frozen section staining and transmission electron microscopy results proved that IR-61 significantly reduced the reactive oxygen species (ROS) levels and prevented the mitochondrial mass and morphology damage in the BSM of diabetic rats. In addition, IR-61 upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its associated antioxidant proteins in the BSM of diabetic rats. Together, these results indicate that IR-61 can improve the voiding function of rats with DBD by protecting the mitochondria of BSMCs from oxidative stress, which is possibly mediated through the activation of the Nrf2 pathway.

17.
Int J Mol Med ; 47(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33649774

RESUMO

There is a growing evidence that Fyn kinase is upregulated in glioblastoma multiforme (GBM), where it plays a key role in tumor proliferation and invasion. In the present study, the antitumor effects of rosmarinic acid (RA), a Fyn inhibitor, were explored in human­derived U251 and U343 glioma cell lines. These cells were treated with various concentrations of RA to determine its effects on proliferation, migration, invasion, apoptosis, and gene and protein expression levels. The CCK­8 assay revealed that RA significantly suppressed cell viability of U251 and U343 cells. Furthermore, RA significantly reduced proliferation rates, inhibited migration and invasion, and decreased the expression levels of invasion­related factors, such as matrix metalloproteinase (MMP)­2 and MMP­9. TUNEL staining revealed that RA resulted in a dose­dependent increase of U251 and U343 cell apoptosis. In line with this finding, the expression of apoptosis suppressor protein Bcl­2 was downregulated and that of the pro­apoptotic proteins Bax and cleaved caspase­3 was increased. In addition, it was revealed that the phosphatidylinositol 3­kinase (PI3K)/Akt/nuclear factor­κB (NF­κB) signaling pathway was involved in RA­induced cytotoxicity in U251 and U343 cells. Collectively, the present study suggested RA as a drug candidate for the treatment of GBM.


Assuntos
Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cinamatos/farmacologia , Depsídeos/farmacologia , Glioma/metabolismo , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Invasividade Neoplásica , Ácido Rosmarínico
18.
Adv Mater ; 33(11): e2008081, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33576149

RESUMO

All-solid-state batteries based on a Li metal anode represent a promising next-generation energy storage system, but are currently limited by low current density and short cycle life. Further research to improve the Li metal anode is impeded by the lack of understanding in its failure mechanisms at lithium-solid interfaces, in particular, the fundamental atomistic processes responsible for interface failure. Here, using large-scale molecular dynamics simulations, the first atomistic modeling study of lithium stripping and plating on a solid electrolyte is performed by explicitly considering key fundamental atomistic processes and interface atomistic structures. In the simulations, the interface failure initiated with the formation of nano-sized pores, and how interface structures, lithium diffusion, adhesion energy, and applied pressure affect interface failure during Li cycling are observed. By systematically varying the parameters of solid-state lithium cells in the simulations, the parameter space of applied pressures and interfacial adhesion energies that inhibit interface failure during cycling are mapped to guide selection of solid-state cells. This study establishes the atomistic modeling for Li stripping and plating, and predicts optimal solid interfaces and new strategies for the future research and development of solid-state Li-metal batteries.

19.
Front Med (Lausanne) ; 8: 783720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977086

RESUMO

Background: Traffic-related pollution is associated with the onset of asthma and the development of different phenotypes of asthma. Few studies have investigated the association between traffic proximity and late-onset of asthma (LOA) and early-onset asthma (EOA). This study was conducted to investigate the associations of LOA phenotypes with a function of the distance between residence and heavy traffic roads (HTRs). Methods: The study group consisted of 280 patients who were (LOA: 78.4%) recruited consecutively from a pay-for-performance asthma program to clarify the patient characteristics and proximity to HTRs within 1,000 m from their residences between EOA and LOA in three urban centers in Taiwan. The subsequent analysis focused on patients with LOA (n = 210) linking phenotypes and distance to HTRs. Results: Subjects with LOA tended to be older than those with EOA and had shorter asthma duration, poorer lung function, lower atopy, and less exposure to fumes or dust at home. Patients with LOA were more likely than those with EOA to live within 900 m of two or more HTRs (14.3 vs. 3.4%, p = 0.02). Among patients with LOA, minimum distance to an HTR was negatively associated with numbers of specific IgE as well as positively associated with the age of onset and body weight significantly. A higher proportion of patients with atopy (26.3 vs. 20.6%, p = 0.001. odds ratio [OR]: 2.82) and anxiety/depression (21.0 vs. 18.1%, p = 0.047. OR: 1.81) and a trend of lower proportion of patients with obese (5.7 vs. 12.4%, p = 0.075) were found to be living within 900 m from HTRs. Conclusions: Late-onset of asthma (LOA) tended to live in areas of higher HTR density compared to EOAs. Among patients with LOA living close to HTRs, the interaction between traffic-related pollution, allergy sensitization, and mood status were the factors associated with asthma onset early. Obesity may be the factor for later onset who live far from HTRs.

20.
Biochem Biophys Res Commun ; 533(4): 1442-1448, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33109343

RESUMO

Cisplatin is used in a wide variety of malignancies, but cisplatin-induced ototoxicity remains a major issue in clinical practice. Experimental evidence indicates that ferroptosis plays a key role in mediating the unwanted cytotoxicity effect caused by cisplatin. However, the role of ferroptosis in cisplatin-induced ototoxicity requires elucidation. Ferrostatin-1 (Fer-1) was identified as a potent inhibitor of ferroptosis and radical-trapping antioxidant with its ability to reduce the accumulation of lipid peroxides and chain-carrying peroxyl radicals. In the current study, we investigated the effects of Fer-1 in cisplatin-induced ototoxicity in in vitro, ex vivo, and in vivo models. We found, for the first time that Fer-1 efficiently alleviated cisplatin-induced cytotoxicity in HEI-OC1 cells via a concentration-dependent manner. Furthermore, Fer-1 mitigated cisplatin cytotoxicity in transgenic zebrafish sensory hair cells. In HEI-OC1 cells, Fer-1 pretreatment not only drastically reduced the generation of intracellular reactive oxygen species but also remarkably decreased lipid peroxidation levels induced by cisplatin. This was not only ascribed to the inhibition of 4-hydroxynonenal, the final product of lipid peroxides, but also to the promotion of glutathione peroxidase 4, the protein marker of ferroptosis. MitoTracker staining and transmission electron microscopy of mitochondrial morphology suggested that in HEI-OC1 cells, Fer-1 can effectively abrogate mitochondrial damage resulting from the interaction with cisplatin. In addition, Fer-1 pretreatment of cochlear explants substantially protected hair cells from cisplatin-induced damage. Therefore, our results demonstrated that ferroptosis might be involved in cisplatin ototoxicity. Fer-1 administration mitigated cisplatin-induced hair cell damage, further investigations are required to elucidate the molecular mechanisms of its otoprotective effect.


Assuntos
Cisplatino/efeitos adversos , Cicloexilaminas/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Ototoxicidade/tratamento farmacológico , Fenilenodiaminas/farmacologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Cóclea/citologia , Cóclea/efeitos dos fármacos , Cicloexilaminas/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Técnicas de Cultura de Órgãos , Ototoxicidade/etiologia , Fenilenodiaminas/administração & dosagem , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA