Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Front Pharmacol ; 15: 1293428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698822

RESUMO

Intracerebral hemorrhage (ICH), a common subtype of hemorrhagic stroke, often causes severe disability or death. ICH induces adverse events that might lead to secondary brain injury (SBI), and there is currently a lack of specific effective treatment strategies. To provide a new direction for SBI treatment post-ICH, the systematic review discussed how thrombin impacts secondary injury after ICH through several potentially deleterious or protective mechanisms. We included 39 studies and evaluated them using SYRCLE's ROB tool. Subsequently, we explored the potential molecular mechanisms of thrombin-mediated effects on SBI post-ICH in terms of inflammation, iron deposition, autophagy, and angiogenesis. Furthermore, we described the effects of thrombin in endothelial cells, astrocytes, pericytes, microglia, and neurons, as well as the harmful and beneficial effects of high and low thrombin concentrations on ICH. Finally, we concluded the current research status of thrombin therapy for ICH, which will provide a basis for the future clinical application of thrombin in the treatment of ICH.

2.
Zhongguo Zhong Yao Za Zhi ; 49(2): 431-442, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403319

RESUMO

This paper aims to explore the inhibitory effect of Yueju Pills on breast cancer and decipher the underlying mechanism. A total of 92 SPF-grade SD female rats were involved in this study, and 14 of them were randomly selected into control group. The remaining 78 rats were administrated with 7,12-dimethylbenzanthracene(DMBA) by gavage to establish the breast cancer model. The modeled rats were randomized into model, tamoxifen(1.9 mg·kg~(-1)·d~(-1)), and low-and high-dose(17, 34 g·kg~(-1)·d~(-1)) Yueju Pills groups. The mental state, food intake, and activities of the rats were observed daily, and the body weight was measured on alternate days. After 12 weeks of administration, the rats were sacrificed and the tumor weight was measured. The serum estrogen and progeste-rone levels were determined by enzyme-linked immunosorbent assay. The histopathological changes of the breast and tumor were observed by hematoxylin-eosin staining. Western blot was employed to measure the protein levels of glucose transporter 1(GLUT1), lactate dehydrogenase A(LDHA), phosphofructokinase muscle(PFKM), pyruvate kinase isozyme type M2(PKM2), hexokinase 2(HK2), nuclear factor-kappaB(NF-κB), and phosphorylated NF-κB. The intestinal microbiome was examined by 16S rRNA high-throughput sequencing. The results showed that compared with the model group, high and low-dose Yueju Pills showed the tumor inhibition rate of 15.8% and 64.5%, respectively, and the low dose group had stronger inhibitory effect. Compared with the control group, the model group presented elevated the levels of estrogen and progesterone in serum. The administration of Yueju Pills lowered such ele-vation, and the low-dose group showed stronger lowering effect(P<0.05). Compared with the model group, Yueju Pills reduced the glands with increased breast tissue, the degree of breast duct expansion, the number and area of acinar cavity, the secretions, and the layers of mammary epithelial cells. Furthermore, Yueju Pills down-regulated the expression of GLUT1, LDHA, PFKM, PKM2, HK2, and NF-κB(P<0.05) and altered the diversity, composition, structure, and abundance of intestinal flora. The results showed that Yueju Pills could inhibit breast cancer by regulating the secretion of estrogen and progesterone, glycolysis, inflammatory cytokines, and intestinal flora.


Assuntos
9,10-Dimetil-1,2-benzantraceno , Neoplasias , Ratos , Feminino , Animais , 9,10-Dimetil-1,2-benzantraceno/toxicidade , NF-kappa B/genética , Progesterona , Transportador de Glucose Tipo 1 , RNA Ribossômico 16S , Estrogênios
3.
Mol Psychiatry ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361128

RESUMO

Major depressive disorder (MDD) is characterized by diverse debilitating symptoms that include loss of motivation and anhedonia. If multiple medications, psychotherapy, and electroconvulsive therapy fail in some patients with MDD, their condition is then termed treatment-resistant depression (TRD). MDD can be associated with abnormalities in the reward-system-dopaminergic mesolimbic pathway, in which the nucleus accumbens (NAc) and ventral tegmental area (VTA) play major roles. Deep brain stimulation (DBS) applied to the NAc alleviates the depressive symptoms of MDD. However, the mechanism underlying the effects of this DBS has remained elusive. In this study, using the chronic unpredictable mild stress (CUMS) mouse model, we investigated the behavioral and neurobiological effects of NAc-DBS on the multidimensional depression-like phenotypes induced by CUMS by integrating behavioral, in vivo microdialysis coupled with high-performance liquid chromatography-electrochemical detector (HPLC-ECD), calcium imaging, pharmacological, and genetic manipulation methods in freely moving mice. We found that long-term and repeated, but not single, NAc-DBS induced robust antidepressant responses in CUMS mice. Moreover, even a single trial NAc-DBS led to the elevation of the γ-aminobutyric acid (GABA) neurotransmitter, accompanied by the increase in dopamine (DA) neuron activity in the VTA. Both the inhibition of the GABAA receptor activity and knockdown of the GABAA-α1 gene in VTA-GABA neurons blocked the antidepressant effect of NAc-DBS in CUMS mice. Our results showed that NAc-DBS could disinhibit VTA-DA neurons by regulating the level of GABA and the activity of VTA-GABA in the VTA and could finally correct the depression-like behaviors in the CUMS mouse model.

4.
Int Immunopharmacol ; 123: 110744, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552908

RESUMO

Intracerebral hemorrhage (ICH) is a stroke subtype characterized by non-traumatic rupture of blood vessels in the brain, resulting in blood pooling in the brain parenchyma. Despite its lower incidence than ischemic stroke, ICH remains a significant contributor to stroke-related mortality, and most survivors experience poor outcomes that significantly impact their quality of life. ICH has been accompanied by various complex pathological damage, including mechanical damage of brain tissue, hematoma mass effect, and then leads to inflammatory response, thrombin activation, erythrocyte lysis, excitatory amino acid toxicity, complement activation, and other pathological changes. Accumulating evidence has demonstrated that activation of complement cascade occurs in the early stage of brain injury, and the excessive complement activation after ICH will affect the occurrence of secondary brain injury (SBI) through multiple complex pathological processes, aggravating brain edema, and pathological brain injury. Therefore, the review summarized the pathological mechanisms of brain injury after ICH, specifically the complement role in ICH, and its related pathological mechanisms, to comprehensively understand the specific mechanism of different complements at different stages after ICH. Furthermore, we systematically reviewed the current state of complement-targeted therapies for ICH, providing a reference and basis for future clinical transformation of complement-targeted therapy for ICH.


Assuntos
Edema Encefálico , Lesões Encefálicas , Acidente Vascular Cerebral , Humanos , Qualidade de Vida , Hemorragia Cerebral/terapia , Hemorragia Cerebral/patologia , Encéfalo/metabolismo , Acidente Vascular Cerebral/complicações , Lesões Encefálicas/tratamento farmacológico , Edema Encefálico/metabolismo , Proteínas do Sistema Complemento/metabolismo
5.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36527428

RESUMO

Understanding the mechanisms of candidate drugs play an important role in drug discovery. The activating/inhibiting mechanisms between drugs and targets are major types of mechanisms of drugs. Owing to the complexity of drug-target (DT) mechanisms and data scarcity, modelling this problem based on deep learning methods to accurately predict DT activating/inhibiting mechanisms remains a considerable challenge. Here, by considering network pharmacology, we propose a multi-view deep learning model, DrugAI, which combines four modules, i.e. a graph neural network for drugs, a convolutional neural network for targets, a network embedding module for drugs and targets and a deep neural network for predicting activating/inhibiting mechanisms between drugs and targets. Computational experiments show that DrugAI performs better than state-of-the-art methods and has good robustness and generalization. To demonstrate the reliability of the predictive results of DrugAI, bioassay experiments are conducted to validate two drugs (notopterol and alpha-asarone) predicted to activate TRPV1. Moreover, external validation bears out 61 pairs of mechanism relationships between natural products and their targets predicted by DrugAI based on independent literatures and PubChem bioassays. DrugAI, for the first time, provides a powerful multi-view deep learning framework for robust prediction of DT activating/inhibiting mechanisms.


Assuntos
Aprendizado Profundo , Algoritmos , Reprodutibilidade dos Testes , Redes Neurais de Computação , Descoberta de Drogas
6.
Med Phys ; 49(8): 5294-5303, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35609213

RESUMO

BACKGROUND: The morbidity of pulmonary embolism (PE) is only lower than that of coronary heart disease and hypertension. Early detection, early diagnosis, and timely treatment are the keys to effectively reduce the risk of death. Nevertheless, PE segmentation is still a challenging task at present. The automatic segmentation of PE is particularly important. On the one hand, manual segmentation of PE from a computed tomography (CT) sequence is very time-consuming and prone to misdiagnose. On the other hand, an accurate contour of the location, volume, and shape of PE can help radiotherapists carry out targeted treatment and thus greatly increase the survival rate of patients. Therefore, developing an automatic and efficient PE segmentation approach is an urgent demand in clinical diagnosis. PURPOSE: An accurate segmentation of PE is critical for the diagnosis of PE. However, it remains a difficult and relevant problem in the field of medical image processing due to factors like incongruent sizes and shapes of emboli regions, and low contrast between embolisms and other tissues. To address this conundrum, in this study, a deep neural network (CAM-Wnet) that incorporates coordinate attention (CA) mechanisms and pyramid pooling modules (PPMs) is proposed to end-to-end segment PE from CT image. METHODS: CAM-Wnet architecture is composed of coarse U-Net and subdivision U-Net stacked on top of each other. First, the coarse U-Net uses a pretrained VGG-19 as an encoder, which can transfer the features learned from ImageNet to other tasks. At the same time, CA residual blocks (CARBs) are introduced into the decoder of the coarse network to obtain a wider range of semantic information and find out the correlation between channels. Then, the multiplied results of input image and preliminary mask are put into the subdivision U-Net for secondary feature distillation, and the encoder and decoder of the subdivision U-Net are both constructed from CARBs, too. The PPMs are used between the encoder and the decoder of two U-Net architectures to utilize global context information and further enhance the feature extraction effect. Finally, the improved focal loss function is used to train the network to further improve the segmentation effect. RESULTS: In this study, we used the doctors' manual contours of the China-Japan Friendship Hospital dataset to test the proposed architecture. We calculated the Precision, Recall, IoU, and F1-score to evaluate the accuracy of the architecture for PE segmentation. The segmentation Precision for PE was found to be 0.9703, Recall was 0.963, IoU was 0.9353, and F1-score was 0.9665. The experimental results show the effectiveness of the proposed method to automatically and accurately segment embolism in lung CT images. Furthermore, we also test the performance of our method on the liver tumor segmentation public dataset, which demonstrates the effectiveness and generalization ability of our method. CONCLUSIONS: CAM-Wnet obtained more global information and semantic information with the introduction of multiscale pooling and attention mechanisms. Experimental results showed that the proposed method effectively improved the segmentation effect of PE in lung CT images and could be applied to assist doctors in clinical treatment.


Assuntos
Redes Neurais de Computação , Embolia Pulmonar , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão , Embolia Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X
7.
IEEE Trans Biomed Circuits Syst ; 16(1): 119-128, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35133967

RESUMO

Functional near-infrared spectroscopy (fNIRS) is a powerful medical imaging tool in brain science and psychology, it can also be employed in brain-computer interface (BCI) due to its noninvasive and artifact-less-sensitive characteristics. Conventional ways to detect large-area brain activity using near-infrared (NIR) technology are based on Time-division or Frequency-division modulation technique, which traverses all physical sensory channels in a specific period. To achieve higher imaging resolution or brain-tasks classification accuracy, the NIRS system require higher density and more channels, which conflict with the limited battery capacity. Inspired by the functional atlas of the human brain, this paper proposes a spatial adaptive sampling (SAS) method. It can change the active channel pattern of the fNIRS system to match with the real-time brain activity, to increase the energy efficiency without significant reduction on the brain imaging quality or the accuracy of brain activity classification. Therefore, the number of the averaging enabled channels will be dramatically reduced in practice. To verify the proposed SAS technique, a wearable and flexible NIRS system has been implemented, in which each channel of light-emitting diode (LED) drive circuits and photodiode (PD) detection circuits can be power gated independently. Brain task experiments have been conducted to validate the proposed method, the power consumption of the LED drive module is reduced by 46.58% compared to that without SAS technology while maintaining an average brain imaging PSNR (Peak Signal to Noise Ratio) of 35 dB. The brain-task classification accuracy is 80.47%, which has a 2.67% reduction compared to that without the SAS technique.


Assuntos
Interfaces Cérebro-Computador , Dispositivos Eletrônicos Vestíveis , Encéfalo/diagnóstico por imagem , Humanos , Razão Sinal-Ruído , Espectroscopia de Luz Próxima ao Infravermelho/métodos
8.
Chin Med ; 16(1): 128, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857022

RESUMO

BACKGROUND: Shen-Zhi-Ling oral liquid (SZL) is an herbal formula known for its efficacy of nourishing "heart and spleen", and is used for the treatment and prevention of middle- and early-stage dementia. This study investigated the effects of SZL on amelioration of AD, and examined whether the underlying mechanisms from the perspective of neuroprotection are related to brain glucose metabolism. METHODS: Firstly, LC-MS/MS was used to analysis the SZL mainly enters the blood component. Then, the effects of SZL on cognitive and behavioral ability of APP/PS1 double transgenic mice and amyloid protein characteristic pathological changes were investigated by behavioral study and morphological observation. The effects of SZL on the ultrastructure of mitochondria, astrocytes, and micrangium related to cerebral glucose metabolism were observed using transmission electron microscopy. Then, micro-PET was also used to observe the effects of SZL on glucose uptake. Furthermore, the effects of SZL on insulin signaling pathway InR/PI3K/Akt and glucose transporters (GLUT1 and GLUT3) were observed by immunohistochemistry, Western-blot and RT-qPCR. Finally, the effects of SZL on brain glucose metabolism and key enzyme were observed. In vitro, the use of PI3K and/or GSK3ß inhibitor to observe the effects of SZL drug-containing serum on GLUT1 and GLUT3. RESULTS: In vivo, SZL could significantly ameliorate cognitive deficits, retarded the pathological damage, including neuronal degeneration, Aß peptide aggregation, and ultrastructural damage of hippocampal neurons, improve the glucose uptake, transporters and glucolysis. Beyond that, SZL regulates the insulin signal transduction pathway the insulin signal transduction pathway InR/PI3K/Akt. Furthermore, 15% SZL drug-containing serum increased Aß42-induced insulin signal transduction-pathway related indicators and GLUT1 and GLUT3 expression in SH-SY5Y cells. The improvement of GLUT1 and GLUT3 in the downstream PI3K/Akt/GSK3ß signaling pathway was reversed by the use of PI3K and/or GSK3ß inhibitor. CONCLUSIONS: In summary, our results demonstrated that improving glucose uptake, transport, and glycolysis in the brain may underlie the neuroprotective effects of SZL, and its potential molecular mechanism may be related to regulate the insulin signal transduction pathway.

9.
3 Biotech ; 11(7): 361, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295606

RESUMO

Most forms of Alzheimer's disease are sporadic. A model of sporadic Alzheimer's disease induced with bilateral intraventricular injection of streptozotocin leads to insulin resistance in the brain accompanied by memory decline, synaptic dysfunction, amyloid plaque deposition, oxidative stress, and neuronal apoptosis, all of which mimic the pathologies associated with sporadic Alzheimer's disease. Myelin injury is an essential component of Alzheimer's disease, playing a key role in early cognitive impairment. Our previously research found that sporadic Alzheimer's disease model showed myelin injury and that Shenzheling oral solution improved mild-to-moderate Alzheimer's disease; therefore, the protective effect of Shenzheling oral solution on myelin injury in early cognitive impairment is worth attention. In this study, the Morris water maze test results showed impairments in the learning and memory functions of mice in the model group, whereas the learning and memory function significantly improved after drug intervention. Immunohistochemistry showed increased ß-amyloid plaques in the model group and decreased amounts in the drug group. Moreover, results of electron microscopy, western blot, and polymerase chain reaction showed that Shenzhiling oral solution improved early cognitive impairment and repaired myelin sheath damage; the potential mechanism of these effects may relate to the PI3K/Akt-mTOR signaling pathway. These findings support the application and promotion of Shenzhiling oral solution to treat sporadic Alzheimer's disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02900-x.

10.
J Ethnopharmacol ; 278: 114264, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34082015

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shenzhiling oral liquid (SZL), a traditional Chinese medicine (TCM) compound, is firstly approved by the Chinese Food and Drug Administration (CFDA) for the treatment of mild to moderate Alzheimer's disease (AD). SZL is composed of ten Chinese herbs, and the precise therapy mechanism of its action to AD is far from fully understood. AIM OF THE STUDY: The purpose of this study was to observe whether SZL is an effective therapy for amyloid-beta (Aß)-induced myelin sheath and oligodendrocytes impairments. Notably, the primary aim was to elucidate whether and through what underlying mechanism SZL protects the myelin sheath through the PI3K/Akt-mTOR signaling pathway in Aß42-induced OLN-93 oligodendrocytes in vitro. MATERIALS AND METHODS: APP/PS1 mice were treated with SZL or donepezil continuously for three months, and Aß42-induced oligodendrocyte OLN-93 cells mimicking AD pathogenesis of myelin sheath impairments were incubated with SZL-containing serum or with donepezil. LC-MS/MS was used to analysis the active components of SZL and SZL-containing serum. The Y maze test was administered after 3 months of treatment, and the hippocampal tissues of the APP/PS1 mice were then harvested for observation of myelin sheath and oligodendrocyte morphology. Cell viability and toxicity were assessed using CCK-8 and lactate dehydrogenase (LDH) release assays, and flow cytometry was used to measure cell apoptosis. The expression of the myelin proteins MBP, PLP, and MAG and that of Aß42 and Aß40 in the hippocampi of APP/PS1 mice were examined after SZL treatment. Simultaneously, the expression of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR were also examined. The expression of proteins, including CNPase, Olig2, NKX2.2, MBP, PLP, MAG, MOG, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR, was determined by immunofluorescence and Western blot, and the corresponding gene expression was evaluated by qPCR in Aß42-induced OLN-93 oligodendrocytes. RESULTS: LC-MS/MS detected a total of 126 active compounds in SZL-containing serum, including terpenoids, flavones, phenols, phenylpropanoids and phenolic acids. SZL treatment significantly improved memory and cognition in APP/PS1 mice and decreased the G-ratio of myelin sheath, alleviated myelin sheath and oligodendrocyte impairments by decreasing Aß42 and Aß40 accumulation and increasing the expression of myelin proteins MBP, PLP, MAG, and PI3K/Akt-mTOR signaling pathway associated protein in the hippocampi of APP/PS1 mice. SZL-containing serum also significantly reversed the OLN-93 cell injury induced by Aß42 by increasing cell viability and enhanced the expression of MBP, PLP, MAG, and MOG. Meanwhile, SZL-containing serum facilitated the maturation and differentiation of oligodendrocytes in Aß42-induced OLN-93 cells by heightening the expression of CNPase, Olig2 and NKX2.2. SZL-containing serum treatment also fostered the expression of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR, indicating an activating PI3K/Akt-mTOR signaling pathway in OLN-93 cells. Furthermore, the effects of SZL on myelin proteins, p-Akt, and p-mTOR were clearly inhibited by LY294002 and/or rapamycin, antagonists of PI3K and m-TOR, respectively. CONCLUSIONS: Our findings indicate that SZL exhibits a neuroprotective effect on the myelin sheath by promoting the expression of myelin proteins during AD, and its mechanism of action is closely related to the activation of the PI3K/Akt-mTOR signaling pathway.


Assuntos
Doença de Alzheimer/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Fármacos Neuroprotetores/farmacologia , Administração Oral , Peptídeos beta-Amiloides/metabolismo , Animais , Cromatografia Líquida , Cognição/efeitos dos fármacos , Donepezila/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Espectrometria de Massas em Tandem
11.
Stem Cell Res Ther ; 12(1): 33, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413636

RESUMO

OBJECTIVE: Our aim was to evaluate the efficacy and safety of intracoronary autologous bone marrow mesenchymal stem cell (BM-MSC) transplantation in patients with ST-segment elevation myocardial infarction (STEMI). METHODS: In this randomized, single-blind, controlled trial, patients with STEMI (aged 39-76 years) were enrolled at 6 centers in Beijing (The People's Liberation Army Navy General Hospital, Beijing Armed Police General Hospital, Chinese People's Liberation Army General Hospital, Beijing Huaxin Hospital, Beijing Tongren Hospital, Beijing Chaoyang Hospital West Hospital). All patients underwent optimum medical treatment and percutaneous coronary intervention and were randomly assigned in a 1:1 ratio to BM-MSC group or control group. The primary endpoint was the change of myocardial viability at the 6th month's follow-up and left ventricular (LV) function at the 12th month's follow-up. The secondary endpoints were the incidence of cardiovascular event, total mortality, and adverse event during the 12 months' follow-up. The myocardial viability assessed by single-photon emission computed tomography (SPECT). The left ventricular ejection fraction (LVEF) was used to assess LV function. All patients underwent dynamic ECG and laboratory evaluations. This trial is registered with ClinicalTrails.gov, number NCT04421274. RESULTS: Between March 2008 and July 2010, 43 patients who had underwent optimum medical treatment and successful percutaneous coronary intervention were randomly assigned to BM-MSC group (n = 21) or control group (n = 22) and followed-up for 12 months. At the 6th month's follow-up, there was no significant improvement in myocardial activity in the BM-MSC group before and after transplantation. Meanwhile, there was no statistically significant difference between the two groups in the change of myocardial perfusion defect index (p = 0.37) and myocardial metabolic defect index (p = 0.90). The LVEF increased from baseline to 12 months in the BM-MSC group and control group (mean baseline-adjusted BM-MSC treatment differences in LVEF 4.8% (SD 9.0) and mean baseline-adjusted control group treatment differences in LVEF 5.8% (SD 6.04)). However, there was no statistically significant difference between the two groups in the change of the LVEF (p = 0.23). We noticed that during the 12 months' follow-up, except for one death and one coronary microvascular embolism in the BM-MSC group, no other events occurred and alanine transaminase (ALT) and C-reactive protein (CRP) in BM-MSC group were significantly lower than that in the control group. CONCLUSIONS: The present study may have many methodological limitations, and within those limitations, we did not identify that intracoronary transfer of autologous BM-MSCs could largely promote the recovery of LV function and myocardial viability after acute myocardial infarction.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Transplante de Medula Óssea , Humanos , Infarto do Miocárdio/terapia , Método Simples-Cego , Volume Sistólico , Resultado do Tratamento , Função Ventricular Esquerda
13.
Artigo em Inglês | MEDLINE | ID: mdl-32774416

RESUMO

White matter degeneration and demyelination are nonnegligible pathological manifestations of Alzheimer's disease (AD). The damage of myelin sheath consisting of oligodendrocytes is the basis of AD's unique early lesions. Shenzhiling oral liquid (SZL) was the effective Chinese herbal compound approved by the Food and Drug Administration (FDA) for the treatment of AD in China, which plays the exact therapeutic role in clinical AD patients. However, its molecular mechanism remains unclear to date. For this purpose, an in vitro mode of streptozotocin- (STZ-) induced rat oligodendrocyte OLN-93 cell injury was established to mimic the pathological changes of myelin sheath of AD and investigate the mechanism of SZL protecting injured OLN-93 cell. The results showed that STZ can decrease cell viability and downregulate the activity of PI3K/Akt-mTOR signalling pathway and the expression of myelin sheath-related proteins (MBP, MOG, and PLP) in OLN-93 cells. Both SZL-medicated serum and donepezil (positive control) can protect cells from STZ-caused damage. SZL-medicated serum increased OLN-93 cell viability in a dose- and time-dependent manner and enhanced the activity of PI3K/Akt-mTOR signalling pathway. The inhibitor of PI3K (LY294002) inhibited the protective effect of SZL-medicated serum on the STZ-injured OLN-93 cells. Furthermore, rapamycin, the inhibitor of mTOR, inhibited the promotion of cell viability and upregulation of p-mTOR and MBP caused by SZL-medicated serum. In conclusion, our data indicate that SZL plays its therapeutic role on AD by promoting PI3K/Akt-mTOR signalling pathway of oligodendrocytes. Thus, the present study may facilitate the therapeutic research of AD.

14.
Chemosphere ; 255: 126983, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32402867

RESUMO

The instability and rapid consumption of H2O2 limit the application of UV/H2O2 in water treatment. Recently, calcium peroxide (CaO2) has been demonstrated as an effective source of H2O2. However, the performance and mechanism of UV/CaO2 are still unknown. Herein, UV/CaO2 and UV/H2O2 were compared for degradation of aniline. The removal efficiency of aniline by UV/CaO2 was slightly lower than that by UV/H2O2, which could be attributed to the light scavenger by CaO2 suspended particles. HO‧ was identified to participate in aniline degradation in both UV/CaO2 and UV/H2O2, while O2-· was only involved in UV/CaO2. The efficiency of aniline degradation in UV/CaO2 was affected by the released H2O2 in the system. The release and decomposition rate of H2O2 in UV/CaO2 system were influenced by the CaO2 dosage and reaction pH, but slightly related with water matrix. Excessive CaO2 would scavenge aniline degradation through the released H2O2 to react with HO‧. Acidic condition would enhance the concentration of H2O2 in UV/CaO2 and promote the degradation of aniline. Cl- showed slight and almost no effect on aniline degradation in UV/CaO2 and UV/H2O2 systems, respectively, while HCO3- scavenged aniline degradation in UV/CaO2. NO3- inhibited aniline degradation in both UV/CaO2 and UV/H2O2. Compared to UV/H2O2, UV/CaO2 shows the similar efficiency on organics removal but conquers the limitations in UV/H2O2, which is a promising alternative choice in water treatment.


Assuntos
Peróxido de Hidrogênio/química , Peróxidos , Raios Ultravioleta , Poluentes Químicos da Água/química , Purificação da Água/métodos , Compostos de Anilina/química , Compostos de Anilina/isolamento & purificação , Carcinógenos/química , Cinética , Oxirredução , Purificação da Água/normas
15.
Cell Calcium ; 88: 102198, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32388008

RESUMO

TRPV1 and TRPA1 are cation channels that play key roles in inflammatory signaling pathways. They are co-expressed on airway C-fibers, where they exert synergistic effects on causing inflammation and cough. Licorice, the root of Glycyrrhiza uralensis, has been widely used in China as an anti-inflammatory and anti-coughing herb. To learn if TRPV1 and TRPA1 might be key targets of the anti-inflammatory and antitussive effects of licorice, we examined liquiritin, the main flavonoid compound and active ingredient of licorice, on agonist-evoked TRPV1 and TRPA1 activation. Liquiritin inhibited capsaicin- and allyl isothiocyanate-evoked TRPV1 and TRPA1 whole-cell currents, respectively, with a similar potency and maximal inhibition. In a mouse acute lung injury (ALI) model induced by the bacterial endotoxin lipopolysaccharide, which involves both TRPV1 and TRPA1, an oral gavage of liquiritin prevented tissue damage and suppressed inflammation and the activation of NF-κB signaling pathway in the lung tissue. Liquiritin also suppressed LPS-induced increase in TRPV1 and TRPA1 protein expression in the lung tissue, as well as TRPV1 and TRPA1 mRNA levels in cells contained in mouse bronchoalveolar lavage fluid. In cultured THP-1 monocytes, liguiritin, or TRPV1 and TRPA1 antagonists capsazepine and HC030031, respectively, diminished not only cytokine-induced upregulation of NF-κB function but also TRPV1 and TRPA1 expression at both protein and mRNA levels. We conclude that the anti-inflammatory and antitussive effects of liquiritin are mediated by the dual inhibition of TRPV1 and TRPA1 channels, which are upregulated in nonneuronal cells through the NF-κB pathway during airway inflammation via a positive feedback mechanism.

16.
Brain Behav ; 10(5): e01602, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32174034

RESUMO

BACKGROUND: Cholinergic dysfunction and oxidative stress are the crucial mechanisms of Alzheimer's disease (AD). GAPT, also called GEPT (a combination of several active components extracted from the Chinese herbs ginseng, epimedium, polygala and tuber curcumae) or Jinsiwei, is a patented Chinese herbal compound, has been clinically widely used to improve learning and memory impairment, but whether it can play a neuroprotective role by protecting cholinergic neurons and reducing oxidative stress injury remains unclear. METHODS: Male ICR mice were intraperitoneally injected with scopolamine (3 mg/kg) to establish a learning and memory disordered model. An LC-MS method was established to study the chemical compounds and in vivo metabolites of GAPT. After scopolamine injection, a step-down passive-avoidance test (SDPA) and a Y maze test were used to estimate learning ability and cognitive function. In addition, ELISA detected the enzymatic activities of acetylcholinesterase (AChE), acetylcholine (ACh), choline acetyltransferase (ChAT), malondialdehyde (MDA), glutathione peroxidase (GPX), and total superoxide dismutase (T-SOD). The protein expressions of AChE, ChAT, SOD1, and GPX1 were observed by western blot, and the distribution of ChAT, SOD1, and GPX1 was observed by immunohistochemical staining. RESULTS: After one-half or 1 month of intragastric administration, GAPT can ameliorate scopolamine-induced behavioral changes in learning and memory impaired mice. It can also decrease the activity of MDA and protein expression level of AChE, increase the activity of Ach, and increase activity and protein expression level of ChAT, SOD, and GPX in scopolamine-treated mice. After one and a half month of intragastric administration of GAPT, echinacoside, salvianolic acid A, ginsenoside Rb1, ginsenoside Rg2, pachymic acid, and beta asarone could be absorbed into mice blood and pass through BBB. CONCLUSIONS: GAPT can improve the learning and memory ability of scopolamine-induced mice, and its mechanism may be related to protecting cholinergic neurons and reducing oxidative stress injury.


Assuntos
Hipocampo , Escopolamina , Animais , Colinérgicos , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo , Escopolamina/toxicidade
17.
Brain Behav ; 9(9): e01385, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31429527

RESUMO

BACKGROUND: Synaptic plasticity is the basis of memory formation. The pathological manifestations of abnormal glucose metabolism in the nervous system of sporadic Alzheimer's disease (SAD) may affect synaptic plasticity, thus causing memory damage. As a traditional Chinese medicine compound preparation, the mechanism by which Shenzhiling (SZL) oral liquid can alleviate the cognitive impairment of SAD by improving synaptic plasticity remains unclear. OBJECTIVE: This article mainly discusses whether SZL can exert a protective synaptic effect as mediated by glutamate receptors and glycogen synthesis kinase 3ß (GSK3ß); further, it discusses whether SZL can improve cognitive function in SAD. METHODS: C57BL/6 mice were used as a SAD model after injection with streptozotocin (STZ) into the bilateral lateral ventricles; mice of the same background were injected with artificial cerebrospinal fluid into bilateral ventricles and were used as a control group. After 3 months of exposure to the intervention, the step-down test was carried out. Western blot was used to detect the levels of NMDAR2B, p-NMDAR2B, mGlu5, GSK3ß, and p-GSK3ß in the hippocampus of mice. Immunohistochemical analysis was used to observe the number of GSK3ß-positive cells in the CA1 region of mouse hippocampus. RESULTS: The memory retention ability of mice was significantly improved after 3 months of SZL treatment, and the expression levels of NMDAR2B, mGlu5, and GSK3ß were significantly changed. CONCLUSION: Shenzhiling provides a potential for the treatment for SAD with traditional Chinese medicine.


Assuntos
Doença de Alzheimer/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Administração Oral , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia
18.
J Hazard Mater ; 368: 840-848, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30754020

RESUMO

Aniline, antimony (Sb) and chromium (Cr) are typical and regulated co-contaminants in textile wastewater, but their removal was often investigated individually. In this work, simultaneous removal of aniline, Sb and Cr by ZVI coupled with H2O2 was studied. With the dosage of 0.5 g L-1 ZVI and 2 mM H2O2, aniline, Sb and Cr can be removed completely at pH 3. Experiment with iso-propanol as the radical scavenger confirmed that OH derived from Fenton reaction accounts for aniline degradation, but not for Sb and Cr removal. H2O2 accelerated Fe(0) corrosion and generated the nanoscale iron(hydro)oxides. Aniline was degraded by OH first and then the degradation products were removed by iron(hydro)oxides via adsorption and co-precipitation. Both Fe(0) and iron(hydro)oxides were responsible for Sb and Cr removal, yet iron(hydro)oxides were identified as the major contributor. X-ray photoelectron spectroscopy analysis demonstrated that Sb and Cr were removed mainly as the states of Sb(III) and Cr(III). The real textile wastewater investigation confirmed that ZVI coupled with H2O2 can eliminate aniline, Sb and Cr effectively, which has important implications for the advanced treatment of textile wastewater.

19.
Water Res ; 148: 344-358, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391863

RESUMO

Textile dyeing wastewater is characterized by low biodegradability and high nitrogen strength, which is difficult to meet the increasingly stringent discharge requirements. Therefore, the tertiary nutrient and refractory organics removal is considered and aerated biofilter is often adopted. However, the aerobic condition and carbon source shortage restrict tertiary biological nitrogen removal. In this study, iron scrap was introduced as the filter medium to enhance the pollutant removal capacity, and three aerobic biofilters were constructed. Biofilter Fe-CE was filled with iron scrap and ceramisite; biofilter Fe-AC was added with iron scrap and granular activated carbon, and biofilter CE only had ceramisite to pad as control system. After the biofilters were acclimatized by synthetic wastewater and actual dyeing wastewater, the optimal operation parameters based on nitrogen removal were determined as pH 7, gas-water ratio 5:1, hydraulic retention time 8 h and C/N ratio 8.5:1. The iron scraps improved total nitrogen (TN) removal significantly, with TN removal efficiency of 68.7% and 57.3% in biofilter Fe-AC and biofilter Fe-CE, comparing with biofilter CE of 29.9%. Additionally, phosphorus and COD had better removal performance as well when iron scrap existed. Further investigation interpreted the reason for iron's facilitating effect on tertiary nutrient and refractory organics removal. The introduction of iron scrap made the habitat conditions such as pH values, DO concentrations and biomass contents inside the biofilters change towards the direction beneficial for pollutant elimination especially for nitrogen removal. In iron containing biofilters, the majority of nitrogen, phosphorus and organic pollutants were removed in the iron scrap layers, and more pollutants types appeared, implying that iron triggered pollutants to go through more diverse degradation or transformation pathways. Moreover, the phylum Proteoabcteria dominated in samples of ceramisite-containing biofilters, with abundances more than 40%. The iron scrap existence increased the abundances of phyla Bacteroidetes and Firmicutes, and triggered higher abundance of denitrification bacteria.


Assuntos
Águas Residuárias , Purificação da Água , Filtração , Ferro , Nitrogênio , Nutrientes
20.
Molecules ; 23(8)2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104469

RESUMO

The oxidation of cefalexin (CFX), a commonly used cephalosporin antibiotic, was investigated by permanganate (PM) in water. Apparent second-order rate constant of the reaction between CFX and PM was determined to be 12.71 ± (1.62) M-1·s-1 at neutral pH. Lower pH was favorable for the oxidation of CFX by PM. The presence of Cl- and HCO3- could enhance PM-induced oxidation of CFX, whereas HA had negligible effect on CFX oxidation by PM. PM-induced oxidation of CFX was also significant in the real wastewater matrix. After addition of bisulfite (BS), PM-induced oxidation was significantly accelerated owing to the generation of Mn(III) reactive species. Product analysis indicated oxidation of CFX to three products, with two stereoisomeric sulfoxide products and one di-ketone product. The thioether sulfur and double bond on the six-membered ring were the reactive sites towards PM oxidation. Antibacterial activity assessment indicated that the activity of CFX solution was significantly reduced after PM oxidation.


Assuntos
Antibacterianos/química , Cefalexina/química , Compostos de Manganês/química , Oxirredução , Óxidos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Cefalexina/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Testes de Sensibilidade Microbiana , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA