Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(21): 9763-9770, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38739043

RESUMO

The delafossites are a class of layered metal oxides that are notable for being able to exhibit optical transparency alongside an in-plane electrical conductivity, making them promising platforms for the development of transparent conductive oxides. Pressure-induced polymorphism offers a direct method for altering the electrical and optical properties in this class, and although the copper delafossites have been studied extensively under pressure, the silver delafossites remain only partially studied. We report two new high-pressure polymorphs of silver ferrite delafossite, AgFeO2, that are stabilized above ∼6 and ∼14 GPa. In situ X-ray diffraction and vibrational spectroscopy measurements are used to examine the structural changes across the two phase transitions. The high-pressure structure between 6 and 14 GPa is assigned as a monoclinic C2/c structure that is analogous to the high-pressure phase reported for AgGaO2. Nuclear resonant forward scattering reveals no change in the spin state or valence state at the Fe3+ site up to 15.3(5) GPa.

2.
Inorg Chem ; 63(24): 11021-11029, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38819699

RESUMO

We combined synchrotron-based infrared absorbance and Raman scattering spectroscopies with diamond anvil cell techniques and a symmetry analysis to explore the properties of multiferroic (NH4)2FeCl5·H2O under extreme pressure-temperature conditions. Compression-induced splitting of the Fe-Cl stretching, Cl-Fe-Cl and Cl-Fe-O bending, and NH4+ librational modes defines two structural phase transitions, and a group-subgroup analysis reveals space group sequences that vary depending upon proximity to the unexpectedly wide order-disorder transition. We bring these findings together with prior high-field work to develop the pressure-temperature-magnetic field phase diagram uncovering competing polar, chiral, and magnetic phases in this system.

3.
Medicine (Baltimore) ; 102(19): e33744, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171308

RESUMO

BACKGROUND: TBL1XR1, also known as IRA1 or TBLR1, encodes a protein that is localized in the nucleus and is expressed in most tissues. TBL1XR1 binds to histones H2B and H4 in vitro and functions in nuclear receptor-mediated transcription. TBL1XR1 is also involved in the regulation of the Wnt-ß-catenin signaling pathway. Mutations in the TBL1XR1 gene impair the Wnt-ß-catenin signaling pathway's ability to recruit Wnt-responsive element chromatin, affecting brain development. Mutations in this gene cause various clinical phenotypes, including Pierpont syndrome, autism spectrum disorder, speech and motor delays, mental retardation, facial dysmorphism, hypotonia, microcephaly, and hearing impairment. CASE SUMMARY: A 5-month-old female child was admitted with "episodic limb tremors for more than 1 month." At the time of admission, the child had recurrent episodes of limb tremors with motor retardation and a partially atypical and hypsarrhythmic video electroencephalogram. It was determined that a heterozygous mutation in the TBL1XR1 gene caused West syndrome and global developmental delay. Recurrent episodes persisted for 6 months following oral treatment with topiramate; the addition of oral treatment with vigabatrin did not show any significant improvement, and the disease continued to recur. The child continued to have recurrent episodes of limb tremors at follow-up until 1 year and 3 months of age. Additionally, she developed poor eye contact and a poor response to name-calling. CONCLUSION: We report the case of a child with West syndrome and a global developmental delay caused by a heterozygous mutation in the TBL1XR1 gene. This study adds to our understanding of the clinical phenotype of TBL1XR1 mutations and provides a realistic and reliable basis for clinicians.


Assuntos
Transtorno do Espectro Autista , Espasmos Infantis , Humanos , Criança , Feminino , beta Catenina/genética , Tremor , Mutação , Proteínas Repressoras/metabolismo , Receptores Citoplasmáticos e Nucleares/genética
4.
Angew Chem Int Ed Engl ; 62(20): e202300957, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36919236

RESUMO

The perovskite (BA)4 [CuII (CuI InIII )0.5 ]Cl8 (1BA ; BA+ =butylammonium) allows us to study the high-pressure structural, optical, and transport properties of a mixed-valence 2D perovskite. Compressing 1BA reduces the onset energy of CuI/II intervalence charge transfer from 1.2 eV at ambient pressure to 0.2 eV at 21 GPa. The electronic conductivity of 1BA increases by 4 orders of magnitude upon compression to 20 GPa, when the activation energy for conduction decreases to 0.16 eV. In contrast, CuII perovskites achieve similar conductivity at ≈50 GPa. The solution-state synthesis of these perovskites is complicated, with more undesirable side products likely from the precursor mixtures containing three different metal ions. To circumvent this problem, we demonstrate an efficient mechanochemical synthesis to expand this family of halide perovskites with complex composition by simply pulverizing together powders of 2D CuII single perovskites and CuI InIII double perovskites.

5.
J Phys Chem Lett ; 14(2): 508-515, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36626164

RESUMO

Metallophilicity has been widely studied as a fundamental supramolecular interaction. However, the extent and directionality thereof remain controversial. A major obstacle lies in the difficulty to separately control the geometry and chemical composition. Herein, we address this challenge by modulating metallophilicity with mechanical pressure. Using a multinuclear Cu(I) complex as model system, we report anomalous anisotropies of (supra)molecular structures, vibrations, and interaction energies upon isotropic compression as well as concomitant (essentially turn-on) piezochromic luminescence enhancement with ∼103 modulation. The in situ characterizations indicate opposite behaviors of contact distances and cuprophilic interactions for intermolecular vs intramolecular Cu-Cu pairs under pressure. Theoretical calculations break down the attractive and repulsive forces associated with cuprophilicity, its spontaneous 4p-3d hybridization origin, and direction-dependent interaction strength. The use of isotropic mechanical force reveals the intrinsic anisotropy of metallophilicity in multinuclear systems.

6.
J Phys Chem Lett ; 13(40): 9404-9410, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36191043

RESUMO

The importance of electronic structure evolutions and reconstitutions is widely acknowledged for strongly correlated systems. The precise effect of pressurized Fermi surface topology on metallization and superconductivity is a much-debated topic. In this work, an evolution from insulating to metallic behavior, followed by a superconducting transition, is systematically investigated in SnS2 under high pressure. In-situ X-ray diffraction measurements show the stability of the trigonal structure under compression. Interestingly, a Lifshitz transition, which has an important bearing on the metallization and superconductivity, is identified by the first-principles calculations between 35 and 40 GPa. Our findings provide a unique playground for exploring the relationship of electronic structure, metallization, and superconductivity under high pressure without crystal structural collapse.

7.
Front Pediatr ; 10: 898693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071884

RESUMO

A 5-month-old patient presented with grayish-blue iris bilaterally, skin and mucosal pigmentation loss, Hirschsprung's disease, full-blown growth retardation, and sensorineural deafness. The patient's whole exon gene sequencing revealed a spontaneous heterozygous code-shifting mutation in the SOX10 gene: c.803del:p.K268Sfs*18. The parents of the child were wild-type, and the site of the mutation is novel.

8.
Angew Chem Int Ed Engl ; 61(25): e202202911, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35421260

RESUMO

As halide perovskites and their derivatives are being developed for numerous optoelectronic applications, controlling their electronic doping remains a fundamental challenge. Herein, we describe a novel strategy of using redox-active organic molecules as stoichiometric electron acceptors. The cavities in the new expanded perovskite analogs (dmpz)[Sn2 X6 ], (X=Br- (1Br) and I- (1I)) are occupied by dmpz2+ (N,N'-dimethylpyrazinium), with the LUMOs lying ca. 1 eV above the valence band maximum (VBM). Compressing the metal-halide framework drives up the VBM in 1I relative to the dmpz LUMO. The electronic conductivity increases by a factor of 105 with pressure, reaching 50(17) S cm-1 at 60 GPa, exceeding the high-pressure conductivities of most halide perovskites. This conductivity enhancement is attributed to an increased hole density created by dmpz2+ reduction. This work elevates the role of organic cations in 3D metal-halides, from templating the structure to serving as charge reservoirs for tuning the carrier concentration.

9.
Chem Rec ; 22(1): e202100178, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34463430

RESUMO

Heteroatom-heteroatom linkage, with S-S bond as a presentative motif, served a crucial role in biochemicals, pharmaceuticals, pesticides, and material sciences. Thus, preparation of the privileged scaffold has always been attracting tremendous attention from the synthetic community. However, classic protocols suffered from several drawbacks, such as toxic and unstable agents, poor functional group tolerance, multiple steps, and explosive oxidizing regents as well as the transitional metal catalysts. Electrochemical organic synthesis exhibited a promising alternative to the traditional chemical reaction due to the sustainable electricity can be employed as the traceless redox agents. Hence, toxic and explosive oxidants and/or transitional metals could be discarded under mild reaction with high efficiency. In this context, a series of electrochemical approaches for the construction of heteroatom-heteroatom bond were reviewed. Notably, most of the cases illustrated the dehydrogenative feature with the clean energy molecules hydrogen as the sole by-product.


Assuntos
Hidrogênio , Elementos de Transição , Catálise
10.
Adv Sci (Weinh) ; 8(18): e2003046, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34250750

RESUMO

Perovskite photovoltaic ABX3 systems are being studied due to their high energy-conversion efficiencies with current emphasis placed on pure inorganic systems. In this work, synchrotron single-crystal diffraction measurements combined with second harmonic generation measurements reveal the absence of inversion symmetry below room temperature in CsPbBr3 . Local structural analysis by pair distribution function and X-ray absorption fine structure methods are performed to ascertain the local ordering, atomic pair correlations, and phase evolution in a broad range of temperatures. The currently accepted space group assignments for CsPbBr3 are found to be incorrect in a manner that profoundly impacts physical properties. New assignments are obtained for the bulk structure: I m 3 ¯ (above ≈410 K), P21 /m (between ≈300 K and ≈410 K), and the polar group Pm (below ≈300 K), respectively. The newly observed structural distortions exist in the bulk structure consistent with the expectation of previous photoluminescence and Raman measurements. High-pressure measurements reveal multiple low-pressure phases, one of which exists as a metastable phase at ambient pressure. This work should help guide research in the perovskite photovoltaic community to better control the structure under operational conditions and further improve transport and optical properties.

11.
Phys Rev Lett ; 125(7): 077202, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857531

RESUMO

We report a pressure-induced phase transition in the frustrated kagomé material jarosite at ∼45 GPa, which leads to the disappearance of magnetic order. Using a suite of experimental techniques, we characterize the structural, electronic, and magnetic changes in jarosite through this phase transition. Synchrotron powder x-ray diffraction and Fourier transform infrared spectroscopy experiments, analyzed in aggregate with the results from density functional theory calculations, indicate that the material changes from a R3[over ¯]m structure to a structure with a R3[over ¯]c space group. The resulting phase features a rare twisted kagomé lattice in which the integrity of the equilateral Fe^{3+} triangles persists. Based on symmetry arguments we hypothesize that the resulting structural changes alter the magnetic interactions to favor a possible quantum paramagnetic phase at high pressure.

12.
Inorg Chem ; 59(14): 10083-10090, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32635719

RESUMO

We combined Raman scattering and magnetic susceptibility to explore the properties of [(CH3)2NH2]Mn(HCOO)3 under compression. Analysis of the formate bending mode reveals a broad two-phase region surrounding the 4.2 GPa critical pressure that becomes increasingly sluggish below the order-disorder transition due to the extensive hydrogen-bonding network. Although the paraelectric and ferroelectric phases have different space groups at ambient-pressure conditions, they both drive toward P1 symmetry under compression. This is a direct consequence of how the order-disorder transition changes under pressure. We bring these findings together with prior magnetization work to create a pressure-temperature-magnetic field phase diagram, unveiling entanglement, competition, and a progression of symmetry-breaking effects that underlie functionality in this molecule-based multiferroic. That the high-pressure P1 phase is a subgroup of the ferroelectric Cc suggests the possibility of enhanced electric polarization as well as opportunity for strain control.

13.
Nano Lett ; 20(8): 5916-5921, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32578991

RESUMO

Atomically thin diamond, also called diamane, is a two-dimensional carbon allotrope and has attracted considerable scientific interest because of its potential physical properties. However, the successful synthesis of a pristine diamane has up until now not been achieved. We demonstrate the realization of a pristine diamane through diamondization of mechanically exfoliated few-layer graphene via compression. Resistance, optical absorption, and X-ray diffraction measurements reveal that hexagonal diamane (h-diamane) with a bandgap of 2.8 ± 0.3 eV forms by compressing trilayer and thicker graphene to above 20 GPa at room temperature and can be preserved upon decompression to ∼1.0 GPa. Theoretical calculations indicate that a (-2110)-oriented h-diamane is energetically stable and has a lower enthalpy than its few-layer graphene precursor above the transition pressure. Compared to gapless graphene, semiconducting h-diamane offers exciting possibilities for carbon-based electronic devices.

14.
Proc Natl Acad Sci U S A ; 117(18): 9747-9754, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312811

RESUMO

Sub-Neptunes are common among the discovered exoplanets. However, lack of knowledge on the state of matter in [Formula: see text]O-rich setting at high pressures and temperatures ([Formula: see text]) places important limitations on our understanding of this planet type. We have conducted experiments for reactions between [Formula: see text] and [Formula: see text]O as archetypal materials for rock and ice, respectively, at high [Formula: see text] We found anomalously expanded volumes of dense silica (up to 4%) recovered from hydrothermal synthesis above ∼24 GPa where the [Formula: see text]-type (Ct) structure appears at lower pressures than in the anhydrous system. Infrared spectroscopy identified strong OH modes from the dense silica samples. Both previous experiments and our density functional theory calculations support up to 0.48 hydrogen atoms per formula unit of ([Formula: see text])[Formula: see text] At pressures above 60 GPa, [Formula: see text]O further changes the structural behavior of silica, stabilizing a niccolite-type structure, which is unquenchable. From unit-cell volume and phase equilibrium considerations, we infer that the niccolite-type phase may contain H with an amount at least comparable with or higher than that of the Ct phase. Our results suggest that the phases containing both hydrogen and lithophile elements could be the dominant materials in the interiors of water-rich planets. Even for fully layered cases, the large mutual solubility could make the boundary between rock and ice layers fuzzy. Therefore, the physical properties of the new phases that we report here would be important for understanding dynamics, geochemical cycle, and dynamo generation in water-rich planets.

15.
J Vet Pharmacol Ther ; 43(4): 347-354, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32133660

RESUMO

The objectives of this study were to compare the plasma and lung tissue pharmacokinetics of tilmicosin in healthy and Mycoplasma gallisepticum-infected chickens. Tilmicosin was orally administered at 4, 7.5 and 10 mg/kg body weight (b.w) for the infected and 7.5 mg/kg b.w for the uninfected control group. We found no significant differences in plasma tilmicosin pharmacokinetics between diseased and healthy control chickens. In contrast, the lung tissues in M. gallisepticum-infected chickens displayed a t1/2 (elimination half-life) 1.76 times longer than for healthy chickens. The Cmax (the maximum concentration of drug in samples) of tilmicosin in M. gallisepticum-infected chickens was lower than for controls at 7.5 mg/kg b.w (p < .05), and the AUCinf (the area under the concentration-time curve from time 0 extrapolated to infinity) in infected chickens was higher than for the healthy chickens (p < .05). The mean residence time of tilmicosin in infected chickens was also higher than the healthy chickens. These results indicated that the lungs of healthy chickens had greater absorption of tilmicosin than the infected chickens, and the rate of elimination of tilmicosin from infected lungs was slower.


Assuntos
Antibacterianos/farmacocinética , Galinhas/metabolismo , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum , Doenças das Aves Domésticas/microbiologia , Tilosina/análogos & derivados , Administração Oral , Animais , Antibacterianos/sangue , Antibacterianos/química , Antibacterianos/uso terapêutico , Área Sob a Curva , Galinhas/sangue , Meia-Vida , Pulmão/química , Infecções por Mycoplasma/sangue , Infecções por Mycoplasma/tratamento farmacológico , Infecções por Mycoplasma/microbiologia , Doenças das Aves Domésticas/sangue , Doenças das Aves Domésticas/tratamento farmacológico , Distribuição Aleatória , Tilosina/administração & dosagem , Tilosina/química , Tilosina/farmacocinética , Tilosina/uso terapêutico
16.
Inorg Chem ; 59(4): 2127-2135, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32009403

RESUMO

We measured the infrared vibrational properties of two copper-containing coordination polymers, [Cu(pyz)2(2-HOpy)2](PF6)2 and [Cu(pyz)1.5(4-HOpy)2](ClO4)2, under different external stimuli in order to explore the microscopic aspects of spin-lattice coupling. While the temperature and pressure control hydrogen bonding, an applied field drives these materials from the antiferromagnetic → fully saturated state. Analysis of the pyrazine (pyz)-related vibrational modes across the magnetic quantum-phase transition provides a superb local probe of magnetoelastic coupling because the pyz ligand functions as the primary exchange pathway and is present in both systems. Strikingly, the PF6- compound employs several pyz-related distortions in support of the magnetically driven transition, whereas the ClO4- system requires only a single out-of-plane pyz bending mode. Bringing these findings together with magnetoinfrared spectra from other copper complexes reveals spin-lattice coupling across the magnetic quantum-phase transition as a function of the structural and magnetic dimensionality. Coupling is maximized in [Cu(pyz)1.5(4-HOpy)2](ClO4)2 because of its ladderlike character. Although spin-lattice interactions can also be explored under compression, differences in the local structure and dimensionality drive these materials to unique high-pressure phases. Symmetry analysis suggests that the high-pressure phase of the ClO4- compound may be ferroelectric.

17.
Proc Natl Acad Sci U S A ; 116(45): 22526-22530, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636209

RESUMO

The Earth's mantle transition zone (MTZ) is often considered an internal reservoir for water because its major minerals wadsleyite and ringwoodite can store several oceans of structural water. Whether it is a hydrous layer or an empty reservoir is still under debate. Previous studies suggested the MTZ may be saturated with iron metal. Here we show that metallic iron reacts with hydrous wadsleyite under the pressure and temperature conditions of the MTZ to form iron hydride or molecular hydrogen and silicate with less than tens of parts per million (ppm) water, implying that water enrichment is incompatible with iron saturation in the MTZ. With the current estimate of water flux to the MTZ, the iron metal preserved from early Earth could transform a significant fraction of subducted water into reduced hydrogen species, thus limiting the hydration of silicates in the bulk MTZ. Meanwhile, the MTZ would become gradually oxidized and metal depleted. As a result, water-rich region can still exist near modern active slabs where iron metal was consumed by reaction with subducted water. Heterogeneous water distribution resolves the apparent contradiction between the extreme water enrichment indicated by the occurrence of hydrous ringwoodite and ice VII in superdeep diamonds and the relatively low water content in bulk MTZ silicates inferred from electrical conductivity studies.

18.
Lipids Health Dis ; 18(1): 151, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286991

RESUMO

BACKGROUND: Free fatty acid (FFA) accumulation in proximal tubules plays a fundamental role in the progress of kidney disease. Here, we reported a rare case with undetectable serum FFAs and further evaluated the changes of serum FFAs in patients with chronic renal failure (CRF). METHODS: We analyzed the clinical data of a rare case and 574 CRF patients. The mRNA expression of lipoprotein lipase (LPL), hepatic lipase (HL) and fatty acid synthase (FASN) were determined in the rare case and 30 age-matched healthy males with qPCR. RESULTS: This rare case had serious proteinuria, hyperglycemia, lipid disorders and bilateral renal glomerular filtration dysfunction. Compared with healthy males, this case showed a 1.49-fold increase of LPL expression (P < 0.01), a 3.38-fold reduction of HL expression (P < 0.001), and no significant change of FASN expression (P > 0.05). In total, 21.6% of CRF patients showed abnormal FFAs. Biochemical parameters such as blood urea nitrogen (BUN) and creatinine (CREA) significantly differed among groups with low-, normal- or high-level-FFAs. Moreover, serum FFAs was found to be associated with BUN. FFAs decreased in the group with higher BUN (> 17.4 mmol/L) and in the group with lower estimated glomerular filtration rate (eGFR) (< 15 mL/min/1.73m2). CONCLUSIONS: The proteinuria, HL low expression and renal function failure may contribute to the FFA reduction, which might imply that the renal function is severely damaged.


Assuntos
Ácidos Graxos não Esterificados/sangue , Falência Renal Crônica/sangue , Adulto , Idoso , Análise Química do Sangue , Estudos de Casos e Controles , Ácido Graxo Sintase Tipo I/genética , Feminino , Expressão Gênica , Taxa de Filtração Glomerular , Humanos , Falência Renal Crônica/fisiopatologia , Lipase/genética , Transtornos do Metabolismo dos Lipídeos/sangue , Transtornos do Metabolismo dos Lipídeos/etiologia , Lipase Lipoproteica/genética , Masculino , Pessoa de Meia-Idade , Proteinúria/sangue , Proteinúria/etiologia
19.
Pathol Res Pract ; 215(8): 152468, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31171380

RESUMO

Hepatocellular carcinoma (HCC) is one of the most malignant cancers around the world. However, the early biomarkers for its detection and treatment are limited currently. Exosomes, classified as intercellular messenger shuttling their cargoes between cells, regulate cell differentiation and tissue development. They contain messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), proteins, lipids and transcription factors. Therefore, exosomes play a crucial role in the development of HCC. In this review, we highlight the exosomal cargoes which could serve as biomarkers for the prediction and diagnosis of HCC. Exosomes are involved in metastases of HCC and they show great potential in immunotherapy and drug resistance mechanism. In summary, exosome suggests new clues in clinical application of HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Progressão da Doença , Humanos , Neoplasias Hepáticas/patologia , RNA Mensageiro/metabolismo
20.
Proc Natl Acad Sci U S A ; 116(19): 9186-9190, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004055

RESUMO

Graphene-based nanodevices have been developed rapidly and are now considered a strong contender for postsilicon electronics. However, one challenge facing graphene-based transistors is opening a sizable bandgap in graphene. The largest bandgap achieved so far is several hundred meV in bilayer graphene, but this value is still far below the threshold for practical applications. Through in situ electrical measurements, we observed a semiconducting character in compressed trilayer graphene by tuning the interlayer interaction with pressure. The optical absorption measurements demonstrate that an intrinsic bandgap of 2.5 ± 0.3 eV could be achieved in such a semiconducting state, and once opened could be preserved to a few GPa. The realization of wide bandgap in compressed trilayer graphene offers opportunities in carbon-based electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA