Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169326, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104804

RESUMO

Sexual reproduction is crucial for population continuity in clonal plants. The effect of nutrient translocation between ramets on sexual reproduction of clonal plants under nitrogen addition remains unclear. In this study, we focused on clonal fragments of Leymus chinensis reproductive ramets with different number of vegetative ramets connected to tillering nodes. A series of pot experiments was conducted under nitrogen addition, including 13C and 15N bidirectional labelling of vegetative ramets and reproductive ramets at the milk-ripe stage, determination of the 13C and 15N amount translocated, and assessment of the quantitative characteristics, nitrogen and carbon concentrations of reproductive ramets and vegetative ramets. Nitrogen addition promoted the translocation of 13C while inhibiting 15N between vegetative ramets and reproductive ramets. With an increase in the number of connected vegetative ramets, the 13C translocated by reproductive ramets and the 15N translocated by reproductive and vegetative ramets gradually increased. The translocation of 13C and 15N between vegetative and reproductive ramets was bidirectional and unequal. The translocated amount of 13C and 15N from reproductive ramets to vegetative ramets was always higher than that from vegetative ramets to reproductive ramets. Nitrogen addition did not prominently affect the sexual reproductive performance of L. chinensis, whereas the number of connected vegetative ramets both positively and negatively affected sexual reproductive performance. Ramet biomass is an important driver of nutrient acquisition by L. chinensis ramets. We demonstrate for the first time that unequal nutrient translocation between ramets affects sexual reproductive performance in L. chinensis. The findings contribute to an enhanced understanding of the reproductive strategies of clonal plant populations in future environments.


Assuntos
Nitrogênio , Poaceae , Carbono , Biomassa , Reprodução
2.
Materials (Basel) ; 15(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35329779

RESUMO

In this paper, the spatial and temporal damage evolution was described during crevice corrosion through developing a two-dimensional (2-D) model. COMSOL code was used to simulate the crevice corrosion regulated by the I∙R voltage of nickel (Ni) metal in sulfuric acidic. The electrode deformation, potential and current curves, and other typical characteristics were predicted during crevice corrosion, where results were consistent with published experimental results. Then, based on the Ni model, the damage evolution of X100 crevice corrosion in CO2 solution was simulated, assuming uniform distribution of solution inside and outside the crevice. The results showed that over time, the surface damage of Ni electrode increased under a constant applied potential. As the gap increased, the critical point of corrosion (CPC) inside the crevice moved into a deeper location, and the corrosion damage area (CDA) gradually expanded, but the threshold value of corrosion damage remained almost unchanged. The CDA inside the crevice extended toward the opening and the tip of crevice. Since the potential drop in this region increases with increasing current, the passivation potential point moved towards the opening. As the gap increased and the electrolyte resistance decreased, the critical potential for reaching the maximum corrosion rate moved into a deeper location. It is significant for predicting the initial damage location and the occurrence time of surface damage of crevice corrosion through the 2-D model that is not available through the one-dimensional simplified model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA