Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(10)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39258571

RESUMO

Liquid-liquid phase transitions hold a unique and profound significance within condensed matter physics. These transitions, while conceptually intriguing, often pose formidable computational challenges. However, recent advances in neural network (NN) potentials offer a promising avenue to effectively address these challenges. In this paper, we delve into the structural transitions of liquid CdTe, CdS, and their alloy systems using molecular dynamics simulations, harnessing the power of an NN potential named LaspNN. Our investigations encompass both pressure and temperature effects. Through our simulations, we uncover three primary liquid structures around melting points that emerge as pressure increases: tetrahedral, rock salt, and close-packed structures, which greatly resemble those of solid states. In the high-temperature regime, we observe the formation of Te chains and S dimers, providing a deeper understanding of the liquid's atomic arrangements. When examining CdSxTe1-x alloys, our findings indicate that a small substitution of S by Te atoms for S-rich alloys (x > 0.5) exhibits a structural transition much different from CdS, while a large substitution of Te by S atoms for Te-rich alloys (x < 0.5) barely exhibits a structural transition similar to CdTe. We construct a schematic diagram for liquid alloys that considers both temperature and pressure, providing a comprehensive overview of the alloy system's behavior. The local aggregation of Te atoms demonstrates a linear relationship with alloy composition x, whereas that of S atoms exhibits a nonlinear one, shedding light on the composition-dependent structural changes.

2.
J Am Chem Soc ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39295520

RESUMO

Massive ethanol production has long been a dream of human society. Despite extensive research in past decades, only a few systems have the potential of industrialization: specifically, Mn-promoted Rh (MnRh) binary heterogeneous catalysts were shown to achieve up to 60% C2 oxygenates selectivity in converting syngas (CO/H2) to ethanol. However, the active site of the binary system has remained poorly characterized. Here, large-scale machine-learning global optimization is utilized to identify the most stable Mn phases on Rh metal surfaces under reaction conditions by exploring millions of likely structures. We demonstrate that Mn prefers the subsurface sites of Rh metal surfaces and is able to emerge onto the surface forming MnRh surface alloy once the oxidative O/OH adsorbates are present. Our machine-learning-based transition state exploration further helps to resolve automatedly the whole reaction network, including 74 elementary reactions on various MnRh surface sites, and reveals that the Mn-Mn dimeric site at the monatomic step edge is the true active site for C2 oxygenate formation. The turnover frequency of the C2 product on the Mn-Mn dimeric site at MnRh steps is at least 107 higher than that on pure Rh steps from our microkinetic simulations, with the selectivity to the C2 product being 52% at 523 K. Our results demonstrate the key catalytic role of Mn-Mn dimeric sites in allowing C-O bond cleavage and facilitating the hydrogenation of O-terminating C2 intermediates, and rule out Rh metal by itself as the active site for CO hydrogenation to C2 oxygenates.

3.
Chem Sci ; 15(33): 13369-13380, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39183905

RESUMO

Predicting the adsorption structure of molecules has long been a challenging topic given the coupled complexity of surface binding sites and molecule flexibility. Here, we develop AIMAP, an Artificial Intelligence Driven Molecule Adsorption Prediction tool, to achieve the general-purpose end-to-end prediction of molecule adsorption structures. AIMAP features efficient exploration of the global potential energy surface of the adsorption system based on global neural network (G-NN) potential, by rapidly screening qualified adsorption patterns and fine searching using stochastic surface walking (SSW) global optimization. We demonstrate the AIMAP efficiency in constructing the Cu-HCNO6 adsorption database, encompassing 1 182 351 distinct adsorption configurations of 9592 molecules on three copper surfaces. AIMAP is then utilized to identify the best adsorption structure for 18 amino acids (AAs) on achiral Cu surfaces and the chiral Cu(3,1,17) S surface. We find that AAs chemisorb on copper surfaces in their highest deprotonated state, through both the carboxylate-amino skeleton and side groups. The chiral recognition is identified for the d-preference of Asp, Glu, and Tyr, and l-preference for His. The physical origin for the enantiospecific adsorption is thus rationalized, pointing to the critical role of the competitive adsorption between functional side groups and the carboxylate-amino skeleton at surface low-coordination sites.

4.
Chem Sci ; 15(33): 13359-13368, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39183919

RESUMO

The design of highly active catalysts is a main theme in organic chemistry, but it still relies heavily on expert experience. Herein, powered by machine-learning global structure exploration, we forge a Metal-Phosphine Catalyst Database (MPCD) with a meticulously designed ligand replacement energy metric, a key descriptor to describe the metal-ligand interactions. It pushes the rational design of organometallic catalysts to a quantitative era, where a ±10 kJ mol-1 window of relative ligand binding strength, a so-called active ligand space (ALS), is identified for highly effective catalyst screening. We highlight the chemistry interpretability and effectiveness of ALS for various C-N, C-C and C-S cross-coupling reactions via a Sabatier-principle-based volcano plot and demonstrate its predictive power in discovering low-cost ligands in catalyzing Suzuki cross-coupling involving aryl chloride. The advent of the MPCD provides a data-driven new route for speeding up organometallic catalysis and other applications.

5.
Angew Chem Int Ed Engl ; 63(39): e202409283, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38962888

RESUMO

Achieving electronic/steric control and realizing selectivity regulation in nanocatalysis remains a formidable challenge, as the dynamic nature of metal-ligand interfaces, including dissolution (metal leaching) and structural reconstruction, poses significant obstacles. Herein, we disclose carboranyls (CBs) as unprecedented carbon-bonded functional ligands (Eads.CB-Au(111)=-2.90 eV) for gold nanoparticles (AuNPs), showcasing their exceptional stabilization capability that is attributed by strong Au-C bonds combined with B-H⋅⋅⋅Au interactions. The synthesized CB@AuNPs exhibit core(Aun)-satellite(CB2Au-) structure, showing high stability towards multiple stimuli (110 °C, pH=1-12, thiol etchants). In addition, different from conventional AuNP catalysts such as triphenylphosphine (PPh3) stabilized AuNPs, dissolution of catalytically active gold species was suppressed in CB@AuNPs under the reaction conditions. Leveraging these distinct features, CB@AuNPs realized outstanding p : o selectivities in aromatic bromination. Unbiased arenes including chlorobenzene (up to >30 : 1), bromobenzene (15 : 1) and phenyl acrylate were examined using CB@AuNPs as catalysts to afford highly-selective p-products. Both carboranyl ligands and carboranyl derived counterions are crucial for such regioselective transformation. This work has provided valuable insights for AuNPs in realizing diverse regioselective transformations.

6.
J Chem Theory Comput ; 20(15): 6717-6727, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39034686

RESUMO

Recent years have seen a surge of machine learning (ML) in chemistry for predicting chemical properties, but a low-cost, general-purpose, and high-performance model, desirable to be accessible on central processing unit (CPU) devices, remains not available. For this purpose, here we introduce an atomic attention mechanism into many-body function corrected neural network (MBNN), namely, MBNN-att ML model, to predict both the extensive and intensive properties of molecules and materials. The MBNN-att uses explicit function descriptors as the inputs for the atom-based feed-forward neural network (NN). The output of the NN is designed to be a vector to implement the multihead self-attention mechanism. This vector is split into two parts: the atomic attention weight part and the many-body-function part. The final property is obtained by summing the products of each atomic attention weight and the corresponding many-body function. We show that MBNN-att performs well on all QM9 properties, i.e., errors on all properties, below chemical accuracy, and, in particular, achieves the top performance for the energy-related extensive properties. By systematically comparing with other explicit-function-type descriptor ML models and the graph representation ML models, we demonstrate that the many-body-function framework and atomic attention mechanism are key ingredients for the high performance and the good transferability of MBNN-att in molecular property prediction.

7.
J Am Chem Soc ; 146(15): 10822-10832, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591182

RESUMO

Cerium-stabilized zirconia (Ce1-xZrxOy, CZO) is renowned for its superior oxygen storage capacity (OSC), a key property long believed to be beneficial to catalytic oxidation reactions. However, 50% Ce-containing CZO recorded with the highest OSC has disappointingly poor performance in catalytic oxidation reactions compared to those with higher Ce contents but lower OSC ability. Here, we employ global neural network (G-NN)-based potential energy surface exploration methods to establish the first ternary phase diagram for bulk structures of CZO, which identifies three critical compositions of CZO, namely, 50, 60, and 80% Ce-containing CZO that are thermodynamically stable under typical synthetic conditions. 50% Ce-containing CZO, although having the highest OSC, exhibits the lowest O vacancy (Ov) diffusion rate. By contrast, 60% Ce-containing CZO, despite lower OSC (33.3% OSC compared to that of 50% Ce-containing CZO), reaches the highest Ov diffusion ability and thus offers the highest CO oxidation catalytic performance. The physical origin of the high performance of 60% Ce-containing CZO is the abundance of energetically favorable Ov pairs along the ⟨110⟩ direction, which reduces the energy barrier of Ov diffusion in the bulk and promotes O2 activation on the surface. Our results clarify the long-standing puzzles on CZO and point out that 60% Ce-containing CZO is the most desirable composition for typical CZO applications.

8.
J Am Chem Soc ; 146(18): 12850-12856, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38648558

RESUMO

Acetylene production from mixed α-olefins emerges as a potentially green and energy-efficient approach with significant scientific value in the selective cleavage of C-C bonds. On the Pd(100) surface, it is experimentally revealed that C2 to C4 α-olefins undergo selective thermal cleavage to form surface acetylene and hydrogen. The high selectivity toward acetylene is attributed to the 4-fold hollow sites which are adept at severing the terminal double bonds in α-olefins to produce acetylene. A challenge arises, however, because acetylene tends to stay at the Pd(100) surface. By using the surface alloying methodology with alien Au, the surface Pd d-band center has been successfully shifted away from the Fermi level to release surface-generated acetylene from α-olefins as a gaseous product. Our study actually provides a technological strategy to economically produce acetylene and hydrogen from α-olefins.

9.
Angew Chem Int Ed Engl ; 63(25): e202401311, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38606491

RESUMO

Electrocatalytic carbonylation of CO and CH3OH to dimethyl carbonate (DMC) on metallic palladium (Pd) electrode offers a promising strategy for C1 valorization at the anode. However, its broader application is limited by the high working potential and the low DMC selectivity accompanied with severe methanol self-oxidation. Herein, our theoretical analysis of the intermediate adsorption interactions on both Pd0 and Pd4+ surfaces revealed that inevitable reconstruction of Pd surface under strongly oxidative potential diminishes its CO adsorption capacity, thus damaging the DMC formation. Further theoretical modeling indicates that doping Pd with Cu not only stabilizes low-valence Pd in oxidative environments but also lowers the overall energy barrier for DMC formation. Guided by this insight, we developed a facile two-step thermal shock method to prepare PdCu alloy electrocatalysts for DMC. Remarkably, the predicted Pd3Cu demonstrated the highest DMC selectivity among existing Pd-based electrocatalysts, reaching a peaked DMC selectivity of 93 % at 1.0 V versus Ag/AgCl electrode. (Quasi) in situ spectra investigations further confirmed the predicted dual role of Cu dopant in promoting Pd-catalyzed DMC formation.

10.
Angew Chem Int Ed Engl ; 63(22): e202403466, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38451163

RESUMO

Tailoring the selectivity at the electrode-electrolyte interface is one of the greatest challenges for heterogeneous electrocatalysis, and complementary strategies to catalyst structural designs need to be developed. Herein, we proposed a new strategy of controlling the electrocatalytic pathways by lateral adsorbate interaction for the bio-polyol oxidation. Redox-innocent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) anion possesses the alcoholic property that facilely adsorbs on the nickel oxyhydroxide catalyst, but is resistant to oxidation due to the electron-withdrawing trifluoromethyl groups. The alien HFIP adsorbents can compete with bio-polyols and form a mixed adsorbate layer that creates lateral adsorbate interaction via hydrogen bonding, which achieved a >2-fold enhancement of the oxalate selectivity to 55 % for the representative glycerol oxidation and can be extended to various bio-polyol substrates. Through in situ spectroscopic analysis and DFT calculation on the glycerol oxidation, we reveal that the hydrogen-bonded adsorbate interaction can effectively tune the adsorption energies and tailor the oxidation capabilities toward the targeted products. This work offers an additional perspective of tuning electrocatalytic reactions via introducing redox-innocent adsorbates to create lateral adsorbate interactions.

11.
ACS Appl Mater Interfaces ; 16(12): 15023-15031, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498850

RESUMO

Interface-influenced crystallization is crucial to understanding the nucleation- and growth-dominated crystallization mechanisms in phase-change materials (PCMs), but little is known. Here, we find that composition vacancy can reduce the interface energy by decreasing the coordinate number (CN) at the interface. Compared to growth-dominated GeTe, nucleation-dominated Ge2Sb2Te5 (GST) exhibits composition vacancies in the (111) interface to saturate or stabilize the Te-terminated plane. Together, the experimental and computational results provide evidence that GST prefers (111) with reduced CN. Furthermore, the (8 - n) bonding rule, rather than CN6, in the nuclei of both GeTe and GST results in lower interface energy, allowing crystallization to be observed at the simulation time in general PCMs. In comparison to GeTe, the reduced CN in the GST nuclei further decreases the interface energy, promoting faster nucleation. Our findings provide an approach to designing ultrafast phase-change memory through vacancy-stabilized interfaces.

12.
Nat Commun ; 15(1): 540, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225230

RESUMO

The limited surface coverage and activity of active hydrides on oxide surfaces pose challenges for efficient hydrogenation reactions. Herein, we quantitatively distinguish the long-puzzling homolytic dissociation of hydrogen from the heterolytic pathway on Ga2O3, that is useful for enhancing hydrogenation ability of oxides. By combining transient kinetic analysis with infrared and mass spectroscopies, we identify the catalytic role of coordinatively unsaturated Ga3+ in homolytic H2 dissociation, which is formed in-situ during the initial heterolytic dissociation. This site facilitates easy hydrogen dissociation at low temperatures, resulting in a high hydride coverage on Ga2O3 (H/surface Ga3+ ratio of 1.6 and H/OH ratio of 5.6). The effectiveness of homolytic dissociation is governed by the Ga-Ga distance, which is strongly influenced by the initial coordination of Ga3+. Consequently, by tuning the coordination of active Ga3+ species as well as the coverage and activity of hydrides, we achieve enhanced hydrogenation of CO2 to CO, methanol or light olefins by 4-6 times.

13.
J Am Chem Soc ; 145(50): 27774-27787, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079498

RESUMO

Solid electrolytes (SEs) are central components that enable high-performance, all-solid-state lithium batteries (ASSLBs). Amorphous SEs hold great potential for ASSLBs because their grain-boundary-free characteristics facilitate intact solid-solid contact and uniform Li-ion conduction for high-performance cathodes. However, amorphous oxide SEs with limited ionic conductivities and glassy sulfide SEs with narrow electrochemical windows cannot sustain high-nickel cathodes. Herein, we report a class of amorphous Li-Ta-Cl-based chloride SEs possessing high Li-ion conductivity (up to 7.16 mS cm-1) and low Young's modulus (approximately 3 GPa) to enable excellent Li-ion conduction and intact physical contact among rigid components in ASSLBs. We reveal that the amorphous Li-Ta-Cl matrix is composed of LiCl43-, LiCl54-, LiCl65- polyhedra, and TaCl6- octahedra via machine-learning simulation, solid-state 7Li nuclear magnetic resonance, and X-ray absorption analysis. Attractively, our amorphous chloride SEs exhibit excellent compatibility with high-nickel cathodes. We demonstrate that ASSLBs comprising amorphous chloride SEs and high-nickel single-crystal cathodes (LiNi0.88Co0.07Mn0.05O2) exhibit ∼99% capacity retention after 800 cycles at ∼3 C under 1 mA h cm-2 and ∼80% capacity retention after 75 cycles at 0.2 C under a high areal capacity of 5 mA h cm-2. Most importantly, a stable operation of up to 9800 cycles with a capacity retention of ∼77% at a high rate of 3.4 C can be achieved in a freezing environment of -10 °C. Our amorphous chloride SEs will pave the way to realize high-performance high-nickel cathodes for high-energy-density ASSLBs.

16.
JACS Au ; 3(11): 2964-2972, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38034951

RESUMO

Nickel peroxides are a class of stoichiometric oxidants that can selectively oxidize various organic compounds, but their molecular level structure remained elusive until now. Herein, we utilized structural prediction using the Stochastic Surface Walking method based on a neural network potential energy surface and advanced characterization using the as-synthesized nickel peroxide to unravel its chemical identity as the bridging superoxide containing nickel hydroxide, or nickel superoxyhydroxide. Superoxide incorporation tunes the local chemical environment of nickel and oxygen beyond the conventional Bode plot, offering a 6.4-fold increase in the electrocatalytic activity of urea oxidation. A volcanic dependence of the activity on the oxygen equivalents leads to the proposed active site of the Ni(OO)(OH)Ni five-membered ring. This work not only unveils the possible structures of nickel peroxides but also emphasizes the significance of tailoring the oxygen environment for advanced catalysis.

17.
J Chem Theory Comput ; 19(21): 7972-7981, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37856312

RESUMO

The high dimensional machine learning potential (MLP) that has developed rapidly in the past decade represents a giant step forward in large-scale atomic simulation for complex systems. The long-range interaction and the poor description of chemical reactions are typical problems of high dimensional MLP, which are mainly caused by the poor structure discrimination of the atom-centered ML model. Herein, we propose a low-cost neural-network-based MLP architecture for fitting global potential energy surface data, namely, G-MBNN, that can offer improved energy and force resolution on a complex potential energy surface. In G-MBNN, a set of many-body energy terms based on the local atomic environment are explicitly included in computing the total energy─the total energy of the system is written as the sum of atomic energy and many-body energy contributions. These extra many-body energy terms are computationally low-cost and, importantly, can provide easy access to delicate energy terms in complex systems such as very short repulsion, long-range attractions, and sensitive angular-dependent covalent interactions. We implement G-MBNN in the LASP code and demonstrate the improved accuracy of the new framework in representative systems, including ternary-element energy materials LiCoOx, TiO2 with defects, and a series of organic reactions.

18.
Sci Adv ; 9(35): eadh3784, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37656794

RESUMO

Water in Earth's deep interior is predicted to be hydroxyl (OH-) stored in nominally anhydrous minerals, profoundly modulating both structure and dynamics of Earth's mantle. Here, we use a high-dimensional neuro-network potential and machine learning algorithm to investigate the weight percent water incorporation in stishovite, a main constituent of the subducted oceanic crust. We found that stishovite and water prefer forming medium- to long-range ordered superstructures, featuring one-dimensional (1D) water channels. Synthesizing single crystals of hydrous stishovite, we verified the ordering of OH- groups in the water channels through optical and nuclear magnetic resonance spectroscopy and found an average H-H distance of 2.05(3) Å, confirming simulation results. Upon heating, H atoms were predicted to behave fluid-like inside the channels, leading to an exotic 1D superionic state. Water-bearing stishovite could feature high ionic mobility and strong electrical anisotropy, manifesting as electrical heterogeneity in Earth's mantle.

19.
Chem Sci ; 14(35): 9461-9475, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712046

RESUMO

Fischer-Tropsch synthesis (FTS, CO + H2 → long-chain hydrocarbons) because of its great significance in industry has attracted huge attention since its discovery. For Fe-based catalysts, after decades of efforts, even the product distribution remains poorly understood due to the lack of information on the active site and the chain growth mechanism. Herein powered by a newly developed machine-learning-based transition state (ML-TS) exploration method to treat properly reaction-induced surface reconstruction, we are able to resolve where and how long-chain hydrocarbons grow on complex in situ-formed Fe-carbide (FeCx) surfaces from thousands of pathway candidates. Microkinetics simulations based on first-principles kinetics data further determine the rate-determining and the selectivity-controlling steps, and reveal the fine details of the product distribution in obeying and deviating from the Anderson-Schulz-Flory law. By showing that all FeCx phases can grow coherently upon each other, we demonstrate that the FTS active site, namely the A-P5 site present on reconstructed Fe3C(031), Fe5C2(510), Fe5C2(021), and Fe7C3(071) terrace surfaces, is not necessarily connected to any particular FeCx phase, rationalizing long-standing structure-activity puzzles. The optimal Fe-C coordination ensemble of the A-P5 site exhibits both Fe-carbide (Fe4C square) and metal Fe (Fe3 trimer) features.

20.
J Am Chem Soc ; 145(28): 15553-15564, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37401830

RESUMO

Both cis- and trans- tetracyclic spiroindolines are the core of many important biologically active indole alkaloids, but the divergent synthesis of these important motifs is largely hampered by the limited stereoselectivity control. A facile stereoinversion protocol is reported here in Michael addition-initiated tandem Mannich cyclizations for constructing tetracyclic spiroindolines, providing an easy access to two diastereoisomeric cores of monoterpene indole alkaloids with high selectivity. The mechanistic studies including in situ NMR experiments, control experiments, and DFT calculations reveal that the reaction undergoes a unique retro-Mannich/re-Mannich rearrangement including a C-C bond cleavage that is very rare for a saturated six-membered carbocycle. Insights into the stereoinversion process have been uncovered, and the major effects were determined to be the electronic properties of N-protecting groups of the indole with the aid of Lewis acid catalysts. By understanding these insights, the stereoselectivity switching strategy is also smoothly applied from enamine substrates to vinyl ether substrates, which are enriched greatly for the divergent synthesis and stereocontrol of monoterpene indole alkaloids. The current reaction also proves to be very practical and was successfully applied to the gram-scale total synthesis of strychnine and deethylibophyllidine in short routes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA