Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 410: 131293, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153688

RESUMO

Microalgae photobioreactor (PBR) is a kind of efficient wastewater treatment system for nitrogen removal. However, there is still an urgent need for process optimization of PBR. Especially, the synergistic effect and optimization of light and flow state poses a challenge. In this study, the computational fluid dynamics is employed for simulating the optimization of the number and length of the internal baffles, as well as the aeration rate of PBR, which in turn leads to the optimal growth of microalgae and efficient nitrogen removal. After optimization, the Light/Dark cycle of the reactor B is shortened by 51.6 %, and the biomass increases from 0.06 g/L to 3.94 g/L. In addition, the removal rate of NH4+-N increased by 106.0 % to 1.56 mg L-1 h-1. This work provides a feasible method for optimizing the design and operational parameters of PBR aiming the engineering application.

2.
Free Radic Biol Med ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128487

RESUMO

The pathogenesis of intervertebral disc degeneration (IVDD) involves complex signaling networks and various effector molecules, and our understanding of the pathogenesis of IVDD is limited. Hypoxia inducible factor-1α (HIF-1α) is closely related to IVDD, and there is excessive oxidative stress concurrent with IVDD. In this study, we found that HIF-1α could protect nucleus pulposus cells from excessive oxidative stress by reversing the imbalance between oxidants and antioxidants and thus mitigating the oxidative stress-induced mitochondrial impairment. With further exploration, we found that pyruvate dehydrogenase kinase 1 (PDK-1) was involved in the protective effect of HIF-1α on nucleus pulposus cells under oxidative stress. We suggested that HIF-1α could preserve the mitochondrial integrity and activate glycolysis in nucleus pulposus cells via PDK-1, and the addition of DCA, a PDK-1 inhibitor, could blunt the protective effect of HIF-1α. In addition, the HIF-1α/PDK-1 regulatory axis was also confirmed in vivo through HIF-1α knockout mice model. Therefore, we propose that HIF-1α protects nucleus pulposus cells from excessive oxidative stress by maintaining the mitochondrial integrity and glycolysis via PDK-1, thus enriching the insight into the protective mechanism of HIF-1α against IVDD, and providing a novel therapeutic target for the treatment of IVDD.

3.
Sci Total Environ ; 948: 174779, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39009161

RESUMO

Replete with ammonia nitrogen and organic pollutants, landfill leachate typically undergoes treatment employing expensive and carbon-intensive integrated techniques. We propose a novel microalgae technology for efficient, low-carbon simultaneous treatment of carbon, nitrogen, and phosphorus in landfill leachate (LL). The microbial composition comprises a mixed microalgae culture with Chlorella accounting for 82.58%. After seven days, the process with an N/P ratio of approximately 14:1 removed 98.81% of NH4+-N, 88.62 % of TN, and 99.55% of TP. Notably, the concentrations of NH4+-N and TP met the discharge standards, while the removal rate of NH4+-N was nearly three times higher than previously reported in relevant studies. The microalgae achieved a removal efficiency of 64.27% for Total Organic Carbon (TOC) and 99.26% for Inorganic Carbon (IC) under mixotrophic cultivation, yielding a biomass of 1.18 g/L. The treatment process employed in this study results in a carbon emissions equivalent of -8.25 kgCO2/kgNremoved, representing a reduction of 33.56 kgCO2 compared to the 2AO + MBR process. In addition, shake flask experiments were conducted to evaluate the biodegradability of leachate after microalgae treatment. After microalgae treatment, the TOCB (Biodegradable Total Organic Carbon)/TOC ratio decreased from 56.54% to 27.71%, with no significant improvement in biodegradability. It establishes a fundamental foundation for further applied research in microalgae treatment of leachate.


Assuntos
Carbono , Microalgas , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Chlorella
4.
Environ Res ; 252(Pt 1): 118881, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582430

RESUMO

Nitrate reduction in bio-electrochemical systems (BESs) has attracted wide attention due to its low sludge yields and cost-efficiency advantages. However, the high resistance of traditional electrodes is considered to limit the denitrification performance of BESs. Herein, a new graphene/polypyrrole (rGO/PPy) modified electrode is fabricated via one-step electrodeposition and used as cathode in BES for improving nitrate removal from wastewater. The formation and morphological results support the successful formation of rGO/PPy nanohybrids and confirm the part covalent bonding of Py into GO honeycomb lattices to form a three-dimensional cross-linked spatial structure. The electrochemical tests indicate that the rGO/PPy electrode outperforms the unmodified electrode due to the 3.9-fold increase in electrochemical active surface area and 6.9-fold decrease in the charge transfer resistance (Rct). Batch denitrification activity tests demonstrate that the BES equipped with modified rGO/PPy biocathode could not only achieve the full denitrification efficiency of 100% with energy recovery (15.9 × 10-2 ± 0.14 A/m2), but also favor microbial attach and growth with improved biocompatible surface. This work provides a feasible electrochemical route to fabricate and design a high-performance bioelectrode to enhance denitrification in BESs.


Assuntos
Desnitrificação , Eletrodos , Grafite , Polímeros , Pirróis , Grafite/química , Polímeros/química , Pirróis/química , Técnicas Eletroquímicas/métodos , Fontes de Energia Bioelétrica , Nitratos/química , Carbono/química , Fibra de Carbono/química
5.
Environ Sci Technol ; 58(12): 5394-5404, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38463002

RESUMO

Conventional microalgal-bacterial consortia have limited capacity to treat low-C/N wastewater due to carbon limitation and single nitrogen (N) removal mode. In this work, indigenous synergetic microalgal-bacterial consortia with high N removal performance and bidirectional interaction were successful in treating rare earth tailing wastewaters with low-C/N. Ammonia removal reached 0.89 mg N L-1 h-1, 1.84-fold more efficient than a common microalgal-bacterial system. Metagenomics-based metabolic reconstruction revealed bidirectional microalgal-bacterial interactions. The presence of microalgae increased the abundance of bacterial N-related genes by 1.5- to 57-fold. Similarly, the presence of bacteria increased the abundance of microalgal N assimilation by 2.5- to 15.8-fold. Furthermore, nine bacterial species were isolated, and the bidirectional promotion of N removal by the microalgal-bacterial system was verified. The mechanism of microalgal N assimilation enhanced by indole-3-acetic acid was revealed. In addition, the bidirectional mode of the system ensured the scavenging of toxic byproducts from nitrate metabolism to maintain the stability of the system. Collectively, the bidirectional enhancement system of synergetic microalgae-bacteria was established as an effective N removal strategy to broaden the stable application of this system for the effective treatment of low C/N ratio wastewater.


Assuntos
Microalgas , Águas Residuárias , Microalgas/metabolismo , Desnitrificação , Nitrogênio/metabolismo , Bactérias/metabolismo , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA