Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954519

RESUMO

The transition period is a critical metabolic phase for dairy ruminants, especially those with high production levels. In spite of this, little is still known about dairy water buffalo. The aim of this study was to evaluate the effect of a commercial feed additive based on diatomaceous earth and hydrolyzed yeasts on health status, milk quality and immune response of buffalo cows during the transition period. Eighty healthy Water buffaloes (Bubalus bubalis) of Italian Mediterranean breed were included in the trial. They were subdivided in two groups: one group received the additive (n = 40) while the control group (n=40) received a placebo. The trial lasted 120 days, from 60 days before calving to 60 days in milk. Blood samples were collected from each buffalo at -60d (60 days from the expected calving), -30 d, 0 d (calving), +15 d, +30 d, and +60 d (respectively, i.e., 15, 30 and 60 days in milking). The biochemical as well as the oxidative profile, and the antioxidant power and enzymatic activity were evaluated in the samples obtained. Moreover, acute phase proteins, reactive proteins and Interleukine plasma levels were determined. Peripheral blood mononuclear cells (PBMC) and monocytes were isolated and viability, reactive oxygen species (ROS) and reactive nitrogen species (RNS) were measured on PMBC and monocytes. The introduction of additives enhanced the total antioxidant capacity and enzyme activity, while no differences were observed in oxidation products throughout the trial. Additionally, it significantly reduced the synthesis of ROS in polymorphonuclear cells, supporting a potential positive response in animals experiencing inflammation. The impact of oxidation on the products was not evident. Despite higher enzyme levels in plasma, this did not necessarily correspond to significantly increased enzymatic activity, but rather indicated a higher potential. From these results, it was evident that the transition period in buffaloes differs notably from what reported in literature for cows, probably due to the absence of common postpartum production diseases in dairy cows and lower metabolic challenges linked to lower milk production in buffaloes. Few parameters exhibited notable changes during the transition period in buffaloes, notably certain antioxidant enzymes, PBMC viability, PBMC ROS production, and Hp levels.

2.
Exp Gerontol ; : 112485, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876448

RESUMO

The natural polyphenol resveratrol (RSV) might counteract the skeletal muscle age-related loss of muscle mass and strength/function partly acting on mitochondria. This work analysed the effects of a six-week administration of RSV (50 mg/kg/day) in the oxidative Soleus (Sol) skeletal muscle of old rats (27 months old). RSV effects on key mitochondrial biogenesis proteins led to un unchanged amount of SIRT1 protein and a marked decrease (60 %) in PGC-1α protein. In addition, Peroxyredoxin 3 (PRXIII) protein decreased by 50 %, which on overall suggested the absence of induction of mitochondrial biogenesis by RSV in old Sol. A novel direct correlation between PGC-1α and PRXIII proteins was demonstrated by correlation analysis in RSV and ad-libitum (AL) rats, supporting the reciprocally coordinated expression of the proteins. RSV supplementation led to an unexpected 50 % increase in the frequency of the oxidized base OH8dG in mtDNA. Furthermore, RSV supplementation induced a 50 % increase in the DRP1 protein of mitochondrial dynamics. In both rat groups an inverse correlation between PGC-1α and the frequency of OH8dG as well as an inverse correlation between PRXIII and the frequency of OH8dG were also found, suggestive of a relationship between oxidative damage to mtDNA and mitochondrial biogenesis activity. Such results may indicate that the antioxidant activity of RSV in aged Sol impinged on the oxidative fiber-specific, ROS-mediated, retrograde communication, thereby affecting the expression of SIRT1, PGC-1α and PRXIII, reducing the compensatory responses to the age-related mitochondrial oxidative stress and decline.

3.
Eur J Med Chem ; 274: 116511, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38820854

RESUMO

A structure-based drug design approach was focused on incorporating phenyl ring heterocyclic bioisosteres into coumarin derivative 1, previously reported as potent dual AChE-MAO B inhibitor, with the aim of improving drug-like features. Structure-activity relationships highlighted that bioisosteric rings were tolerated by hMAO B enzymatic cleft more than hAChE. Interestingly, linker homologation at the basic nitrogen enabled selectivity to switch from hAChE to hBChE. In the present work, we identified thiophene-based isosteres 7 and 15 as dual AChE-MAO B (IC50 = 261 and 15 nM, respectively) and BChE-MAO B (IC50 = 375 and 20 nM, respectively) inhibitors, respectively. Both 7 and 15 were moderately water-soluble and membrane-permeant agents by passive diffusion (PAMPA-HDM). Moreover, they were able to counteract oxidative damage induced by both H2O2 and 6-OHDA in SH-SY5Y cells and predicted to penetrate into CNS in a cell-based model mimicking blood-brain barrier. Molecular dynamics (MD) simulations shed light on key differences in AChE and BChE recognition processes promoted by the basic chain homologation from 7 to 15.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Desenho de Fármacos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Humanos , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Butirilcolinesterase/metabolismo , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Dinâmica Molecular , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Linhagem Celular Tumoral
4.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675538

RESUMO

Polyphenols, the main antioxidants of diet, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of four polyphenolic compounds on ROS production and on the levels of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of breast cancer. THP-1 differentiated macrophages were activated by LPS and simultaneously treated with different doses of a green tea extract (GTE), resveratrol (RSV), curcumin (CRC) and an olive fruit extract (oliplus). By using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, we found that all of the tested compounds showed antioxidant activity in vitro. In addition, GTE, RSV and CRC were able to counteract ROS production induced by H2O2 in THP-1 cells. As assessed by a zymographic analysis of THP-1 supernatants and by an "in-gel zymography" of a pool of sera from patients with breast cancer, the antioxidant compounds used in this study inhibited both the activity and expression of MMP-2 and MMP-9 through different mechanisms related to their structures and to their ability to scavenge ROS. The results of this study suggest that the used antioxidants could be promising agents for the prevention and complementary treatment of breast cancer and other diseases in which MMPs play a pivotal role.


Assuntos
Antioxidantes , Neoplasias da Mama , Macrófagos , Feminino , Humanos , Antioxidantes/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Curcumina/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia , Células THP-1
5.
Eur J Med Chem ; 269: 116266, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490063

RESUMO

In neurodegenerative diseases, using a single molecule that can exert multiple effects to modify the disease may have superior activity over the classical "one molecule-one target" approach. Herein, we describe the discovery of 6-hydroxybenzothiazol-2-carboxamides as highly potent and selective MAO-B inhibitors. Variation of the amide substituent led to several potent compounds having diverse side chains with cyclohexylamide 40 displaying the highest potency towards MAO-B (IC50 = 11 nM). To discover new compounds with extended efficacy against neurotoxic mechanisms in neurodegenerative diseases, MAO-B inhibitors were screened against PHF6, R3 tau, cellular tau and α-synuclein (α-syn) aggregation. We identified the phenethylamide 30 as a multipotent inhibitor of MAO-B (IC50 = 41 nM) and α-syn and tau aggregation. It showed no cytotoxic effects on SH-SY5Y neuroblastoma cells, while also providing neuroprotection against toxicities induced by α-syn and tau. The evaluation of key physicochemical and in vitro-ADME properties revealed a great potential as drug-like small molecules with multitarget neuroprotective activity.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Humanos , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Neuroproteção , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade
6.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396818

RESUMO

Chronic exposure to manganese (Mn) leads to its accumulation in the central nervous system (CNS) and neurotoxicity with not well-known mechanisms. We investigated the involvement of matrix metalloproteinase (MMP)-2 and -9 in Mn neurotoxicity in an in vivo model of rats treated through an intraperitoneal injection, for 4 weeks, with 50 mg/kg of MnCl2 in the presence or in the absence of 30 mg/kg of resveratrol (RSV). A loss of weight was observed in Mn-treated rats compared with untreated and RSV-treated rats. A progressive recovery of body weight was detected in rats co-treated with Mn and RSV. The analysis of brain homogenates indicated that RSV counteracted the Mn-induced increase in MMP-9 levels and reactive oxygen species production as well as the Mn-induced decrease in superoxide dismutase activity and glutathione content. In conclusion, Mn exposure, resulting in MMP-9 induction with mechanisms related to oxidative stress, represents a risk factor for the development of CNS diseases.


Assuntos
Fármacos Neuroprotetores , Síndromes Neurotóxicas , Resveratrol , Animais , Ratos , Manganês/toxicidade , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Estresse Oxidativo , Resveratrol/farmacologia
7.
Cells ; 12(18)2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37759493

RESUMO

Background: Neurological symptoms (NS) in COVID-19 are related to both acute stage and long-COVID. We explored levels of brain injury biomarkers (NfL and GFAP) and myeloid activation marker (sCD163) and their implications on the CNS. Materials and Methods: In hospitalized COVID-19 patients plasma samples were collected at two time points: on hospital admission (baseline) and three months after hospital discharge (Tpost). Patients were stratified according to COVID-19 severity based on acute respiratory distress syndrome (ARDS) onset (severe and non-severe groups). A further stratification according to the presence of NS (with and without groups) at baseline (requiring a puncture lumbar for diagnostic purposes) and according to NS self-referred at Tpost was performed. Finally, cerebrospinal fluid (CSF) samples were collected from patients with NS present at baseline. Results: We enrolled 144 COVID-19 patients (62 female/82 male; median age [interquartile range, IQR]): 64 [55-77]) and 53 heathy donors (HD, 30 female/23 male; median age [IQR]: 64 [59-69]). At baseline, higher plasma levels of NfL, GFAP and sCD163 in COVID-19 patients compared to HD were observed (p < 0.0001, p < 0.0001 and p < 0.0001, respectively), especially in those with severe COVID-19 (p < 0.0001, p < 0.0001 and p < 0.0001, respectively). Patients with NS showed higher plasma levels of NfL, GFAP and sCD163 compared to those without (p = 0.0023, p < 0.0001 and 0.0370, respectively). At baseline, in COVID-19 patients with NS, positive correlations between CSF levels of sCD163 and CSF levels of NfL (ρ = 0.7536, p = 0.0017) and GFAP were observed (ρ = 0.7036, p = 0.0045). At Tpost, the longitudinal evaluation performed on 77 COVID-19 patients showed a significant reduction in plasma levels of NfL, GFAP and sCD163 compared to baseline (p < 0.0001, p < 0.0001 and p = 0.0413, respectively). Finally, at Tpost, in the severe group, higher plasma levels of sCD163 in patients with NS compared to those without were reported (p < 0.0001). Conclusions: High plasma levels of NfL, GFAP and sCD163 could be due to a proinflammatory systemic and brain response involving microglial activation and subsequent CNS damage. Our data highlight the association between myeloid activation and CNS perturbations.


Assuntos
COVID-19 , Humanos , Masculino , Feminino , COVID-19/complicações , Síndrome de COVID-19 Pós-Aguda , Encéfalo , Biomarcadores , Progressão da Doença
8.
Biomolecules ; 13(7)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37509076

RESUMO

Background: The aim of the study was to longitudinally evaluate the association between MMP-2, MMP-9, TIMP-1 and chest radiological findings in COVID-19 patients. Methods: COVID-19 patients were evaluated based on their hospital admission (baseline) and three months after hospital discharge (T post) and were stratified into ARDS and non-ARDS groups. As a control group, healthy donors (HD) were enrolled. Results: At the baseline, compared to HD (n = 53), COVID-19 patients (n = 129) showed higher plasma levels of MMP-9 (p < 0.0001) and TIMP-1 (p < 0.0001) and the higher plasma activity of MMP-2 (p < 0.0001) and MMP-9 (p < 0.0001). In the ARDS group, higher plasma levels of MMP-9 (p = 0.0339) and TIMP-1 (p = 0.0044) and the plasma activity of MMP-2 (p = 0.0258) and MMP-9 (p = 0.0021) compared to non-ARDS was observed. A positive correlation between the plasma levels of TIMP-1 and chest computed tomography (CT) score (ρ = 0.2302, p = 0.0160) was observed. At the T post, a reduction in plasma levels of TIMP-1 (p < 0.0001), whereas an increase in the plasma levels of MMP-9 was observed (p = 0.0088). Conclusions: The positive correlation between TIMP-1 with chest CT scores highlights its potential use as a marker of fibrotic burden. At T post, the increase in plasma levels of MMP-9 and the reduction in plasma levels of TIMP-1 suggested that inflammation and fibrosis resolution were still ongoing.


Assuntos
COVID-19 , Inibidor Tecidual de Metaloproteinase-1 , Humanos , Metaloproteinase 9 da Matriz , Metaloproteinase 2 da Matriz , Inibidor Tecidual de Metaloproteinase-2 , Metaloproteinase 1 da Matriz
9.
Eur J Med Chem ; 255: 115352, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37178666

RESUMO

Following a hybridization strategy, a series of 5-substituted-1H-indazoles were designed and evaluated in vitro as inhibitors of human monoamine oxidase (hMAO) A and B. Among structural modifications, the bioisostere-based introduction of 1,2,4-oxadiazole ring returned the most potent and selective human MAO B inhibitor (compound 20, IC50 = 52 nM, SI > 192). The most promising inhibitors were studied in cell-based neuroprotection models of SH-SY5Y and astrocytes line against H2O2. Moreover, preliminary drug-like features (aqueous solubility at pH 7.4; hydrolytic stability at acidic and neutral pH) were assessed for selected 1,2,4-oxadiazoles and compared to amide analogues through RP-HPLC methods. Molecular docking simulations highlighted the crucial role of molecular flexibility in providing a better shape complementarity for compound 20 within MAO B enzymatic cleft than rigid analogue 18. Enzymatic kinetics analysis along with thermal stability curves (Tm shift = +2.9 °C) provided clues of a tight-binding mechanism for hMAO B inhibition by 20.


Assuntos
Neuroblastoma , Neuroproteção , Humanos , Simulação de Acoplamento Molecular , Indazóis/farmacologia , Indazóis/química , Oxidiazóis/farmacologia , Peróxido de Hidrogênio , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade
10.
Nutrients ; 15(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37111131

RESUMO

The last century has seen an increase in our life expectancy. As a result, various age-related diseases, such as neurodegenerative diseases (NDs), have emerged, representing new challenges to society. Oxidative stress (OS), a condition of redox imbalance resulting from excessive production of reactive oxygen species, represents a common feature that characterizes the brains of elderly people, thus contributing to NDs. Consequently, antioxidant supplementation or dietary intake of antioxidant-containing foods could represent an effective preventive and therapeutic intervention to maintain the integrity and survival of neurons and to counteract the neurodegenerative pathologies associated with aging. Food contains numerous bioactive molecules with beneficial actions for human health. To this purpose, a wide range of edible mushrooms have been reported to produce different antioxidant compounds such as phenolics, flavonoids, polysaccharides, vitamins, carotenoids, ergothioneine, and others, which might be used for dietary supplementation to enhance antioxidant defenses and, consequently, the prevention of age-related neurological diseases. In this review, we summarized the role of oxidative stress in age-related NDs, focusing on the current knowledge of the antioxidant compounds present in edible mushrooms, and highlighting their potential to preserve healthy aging by counteracting age-associated NDs.


Assuntos
Agaricales , Doenças Neurodegenerativas , Humanos , Idoso , Antioxidantes/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/prevenção & controle , Estresse Oxidativo , Vitaminas/uso terapêutico
11.
Molecules ; 28(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903422

RESUMO

In this study the antioxidant and neuroprotective activity of an enriched polysaccharide fraction (EPF) obtained from the fruiting body of cultivated P. eryngii was evaluated. Proximate composition (moisture, proteins, fat, carbohydrates and ash) was determined using the AOAC procedures. The EPF was extracted by using, in sequence, hot water and alkaline extractions followed by deproteinization and precipitation with cold ethanol. Total α- and ß-glucans were quantified using the Megazyme International Kit. The results showed that this procedure allows a high yield of polysaccharides with a higher content of (1-3; 1-6)-ß-D-glucans. The antioxidant activity of EPF was detected from the total reducing power, DPPH, superoxide, hydroxyl and nitric oxide radical scavenging activities. The EPF was found to scavenge DPPH, superoxide, hydroxyl and nitric oxide radicals with a IC50 values of 0.52 ± 0.02, 1.15 ± 0.09, 0.89 ± 0.04 and 2.83 ± 0.16 mg/mL, respectively. As assessed by the MTT assay, the EPF was biocompatible for DI-TNC1 cells in the range of 0.006-1 mg/mL and, at concentrations ranging from 0.05 to 0.2 mg/mL, significantly counteracted H2O2-induced reactive oxygen species production. This study demonstrated that polysaccharides extracted from P. eryngii might be used as functional food to potentiate the antioxidant defenses and to reduce oxidative stress.


Assuntos
Agaricales , Pleurotus , Antioxidantes/química , Agaricales/metabolismo , Superóxidos/metabolismo , Óxido Nítrico/metabolismo , Peróxido de Hidrogênio/metabolismo , Pleurotus/química , Polissacarídeos/química , Radical Hidroxila/metabolismo
12.
Cells ; 12(4)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36831321

RESUMO

BACKGROUND AND METHODS: Severe COVID-19 is known to induce neurological damage (NeuroCOVID), mostly in aged individuals, by affecting brain-derived neurotrophic factor (BDNF), matrix metalloproteinases (MMP) 2 and 9 and the neurofilament light chain (NFL) pathways. Thus, the aim of this pilot study was to investigate BDNF, MMP-2, MMP-9, and NFL in the serum of aged men affected by COVID-19 at the beginning of the hospitalization period and characterized by different outcomes, i.e., attending a hospital ward or an intensive care unit (ICU) or with a fatal outcome. As a control group, we used a novelty of the study, unexposed age-matched men. We also correlated these findings with the routine blood parameters of the recruited individuals. RESULTS: We found in COVID-19 individuals with severe or lethal outcomes disrupted serum BDNF, NFL, and MMP-2 presence and gross changes in ALT, GGT, LDH, IL-6, ferritin, and CRP. We also confirmed and extended previous data, using ROC analyses, showing that the ratio MMPs (2 and 9) versus BDNF and NFL might be a useful tool to predict a fatal COVID-19 outcome. CONCLUSIONS: Serum BDNF and NFL and/or their ratios with MMP-2 and MMP-9 could represent early predictors of NeuroCOVID in aged men.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , COVID-19 , Masculino , Humanos , Idoso , Metaloproteinase 9 da Matriz , Metaloproteinase 2 da Matriz , Filamentos Intermediários , Projetos Piloto , Morbidade
13.
Eur J Med Chem ; 250: 115169, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36753881

RESUMO

A set of twenty-five thioxanthene-9-one and xanthene-9-one derivatives, that were previously shown to inhibit cholinesterases (ChEs) and amyloid ß (Aß40) aggregation, were evaluated for the inhibition of tau protein aggregation. All compounds exhibited a good activity, and eight of them (5-8, 10, 14, 15 and 20) shared comparable low micromolar inhibitory potency versus Aß40 aggregation and human acetylcholinesterase (AChE), while inhibiting human butyrylcholinesterase (BChE) even at submicromolar concentration. Compound 20 showed outstanding biological data, inhibiting tau protein and Aß40 aggregation with IC50 = 1.8 and 1.3 µM, respectively. Moreover, at 0.1-10 µM it also exhibited neuroprotective activity against tau toxicity induced by okadoic acid in human neuroblastoma SH-SY5Y cells, that was comparable to that of estradiol and PD38. In preliminary toxicity studies, these interesting results for compound 20 are somewhat conflicting with a narrow safety window. However, compound 10, although endowed with a little lower potency for tau and Aß aggregation inhibition additionally demonstrated good inhibition of ChEs and rather low cytotoxicity. Compound 4 is also worth of note for its high potency as hBChE inhibitor (IC50 = 7 nM) and for the three order of magnitude selectivity versus hAChE. Molecular modelling studies were performed to explain the different behavior of compounds 4 and 20 towards hBChE. The observed balance of the inhibitory potencies versus the relevant targets indicates the thioxanthene-9-one derivatives as potential MTDLs for AD therapy, provided that the safety window will be improved by further structural variations, currently under investigation.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Estrutura Molecular , Relação Estrutura-Atividade , Neuroblastoma/tratamento farmacológico , Desenho de Fármacos , Simulação de Acoplamento Molecular
14.
Free Radic Res ; 56(7-8): 511-525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36480241

RESUMO

Flavin adenine dinucleotide (FAD) synthase (EC 2.7.7.2), encoded by human flavin adenine dinucleotide synthetase 1 (FLAD1), catalyzes the last step of the pathway converting riboflavin (Rf) into FAD. FLAD1 variations were identified as a cause of LSMFLAD (lipid storage myopathy due to FAD synthase deficiency, OMIM #255100), resembling Multiple Acyl-CoA Dehydrogenase Deficiency, sometimes treatable with high doses of Rf; no alternative therapeutic strategies are available. We describe here cell morphological and mitochondrial alterations in dermal fibroblasts derived from a LSMFLAD patient carrying a homozygous truncating FLAD1 variant (c.745C > T) in exon 2. Despite a severe decrease in FAD synthesis rate, the patient had decreased cellular levels of Rf and flavin mononucleotide and responded to Rf treatment. We hypothesized that disturbed flavin homeostasis and Rf-responsiveness could be due to a secondary impairment in the expression of the Rf transporter 2 (RFVT2), encoded by SLC52A2, in the frame of an adaptive retrograde signaling to mitochondrial dysfunction. Interestingly, an antioxidant response element (ARE) is found in the region upstream of the transcriptional start site of SLC52A2. Accordingly, we found that abnormal mitochondrial morphology and impairments in bioenergetics were accompanied by increased cellular reactive oxygen species content and mtDNA oxidative damage. Concomitantly, an active response to mitochondrial stress is suggested by increased levels of PPARγ-co-activator-1α and Peroxiredoxin III. In this scenario, the treatment with high doses of Rf might compensate for the secondary RFVT2 molecular defect, providing a molecular rationale for the Rf responsiveness in patients with loss of function variants in FLAD1 exon 2.HIGHLIGHTSFAD synthase deficiency alters mitochondrial morphology and bioenergetics;FAD synthase deficiency triggers a mitochondrial retrograde response;FAD synthase deficiency evokes nuclear signals that adapt the expression of RFVT2.


Assuntos
Flavina-Adenina Dinucleotídeo , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Humanos , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/uso terapêutico , Riboflavina/genética , Riboflavina/metabolismo , Riboflavina/uso terapêutico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Éxons , Mononucleotídeo de Flavina/genética , Mononucleotídeo de Flavina/uso terapêutico
15.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500238

RESUMO

Cardiovascular diseases represent the main cause of death. A common feature of cardiovascular disease is thrombosis resulting from intravascular accumulation of fibrin. In the last years, several fibrinolytic enzymes have been discovered in many medicinal or edible mushrooms as potential new antithrombotic agents. This study aimed to compare the fibrin(ogen)olytic activity of crude extracts from the fruiting bodies of four cultivated edible mushrooms: Lentinula edodes, Pleurotus ostreatus, Pleurotus eryngii, and Agrocybe aegerita. Fibrin(ogen)olytic activity was assessed by fibrin plate, spectrophotometric assay and electrophoretic analysis (SDS-PAGE and zymography). The highest activity was detected for P. ostreatus followed by P. eryngii, L. edodes and A. aegerita. Results indicated that enzymes exhibited maximum activity at pH 6-7 and 30-40 °C, respectively. Enzyme activity was inhibited by serine and metalloprotease inhibitors. We proposed a new index called the Specific Fibrin(ogen)olytic Index (SFI), which allows specification of the proportion of the total proteolytic capacity due to the fibrin(ogen)olytic activity. These data suggest that the extracts from fruiting bodies or powdered mushrooms can be used as functional ingredients for the development of new functional foods that may act as thrombolytic agents responding, at the same time, to the increasing demand for safe, healthy and sustainable food.


Assuntos
Fibrina , Trombose , Humanos , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Trombose/tratamento farmacológico , Peptídeo Hidrolases
16.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36233234

RESUMO

In the direct-acting antiviral (DAA) era, it is important to understand the immunological changes after HCV eradication in HCV monoinfected (mHCV) and in HIV/HCV coinfected (HIV/HCV) patients. In this study, we analyzed sub-populations of monocytes, dendritic cells (DCs), T-lymphocytes and inflammatory biomarkers following initiation of DAA in 15 mHCV and 16 HIV/HCV patients on effective antiretroviral therapy at baseline and after sustained virological response at 12 weeks (SVR12). Fifteen age- and sex-matched healthy donors (HD) were enrolled as a control group. Activated CD4+ and CD8+ T-lymphocytes, mDCs, pDCs, MDC8 and classical, non-classical and intermediate monocytes were detected using flow cytometry. IP-10, sCD163 and sCD14 were assessed by ELISA while matrix metalloproteinase-2 (MMP-2) was measured by zymography. At baseline, increased levels of IP-10, sCD163 and MMP-2 were found in both HIV/HCV and mHCV patients compared to HD, whereas sCD14 increased only in HIV/HCV patients. After therapy, IP-10, sCD163 and sCD14 decreased, whereas MMP-2 persistently elevated. At baseline, activated CD8+ T-cells were high in HIV/HCV and mHCV patients compared to HD, with a decrease at SVR12 only in HIV/HCV patients. Activated CD4+ T-cells were higher in HIV/HCV patients without modification after DAAs therapy. These results suggest complex interactions between both viruses and the immune system, which are only partially reversed by DAA treatment.


Assuntos
Coinfecção , Infecções por HIV , Hepatite C Crônica , Antivirais/uso terapêutico , Biomarcadores , Quimiocina CXCL10 , Coinfecção/tratamento farmacológico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Hepacivirus , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Humanos , Receptores de Lipopolissacarídeos , Metaloproteinase 2 da Matriz
17.
Cells ; 11(16)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-36010557

RESUMO

Neurofilament light chain (NfL) is a specific biomarker of neuro-axonal damage. Matrix metalloproteinases (MMPs) are zinc-dependent enzymes involved in blood-brain barrier (BBB) integrity. We explored neuro-axonal damage, alteration of BBB integrity and SARS-CoV-2 RNA presence in COVID-19 patients with severe neurological symptoms (neuro-COVID) as well as neuro-axonal damage in COVID-19 patients without severe neurological symptoms according to disease severity and after recovery, comparing the obtained findings with healthy donors (HD). Overall, COVID-19 patients (n = 55) showed higher plasma NfL levels compared to HD (n = 31) (p < 0.0001), especially those who developed ARDS (n = 28) (p = 0.0005). After recovery, plasma NfL levels were still higher in ARDS patients compared to HD (p = 0.0037). In neuro-COVID patients (n = 12), higher CSF and plasma NfL, and CSF MMP-2 levels in ARDS than non-ARDS group were observed (p = 0.0357, p = 0.0346 and p = 0.0303, respectively). SARS-CoV-2 RNA was detected in four CSF and two plasma samples. SARS-CoV-2 RNA detection was not associated to increased CSF NfL and MMP levels. During COVID-19, ARDS could be associated to CNS damage and alteration of BBB integrity in the absence of SARS-CoV-2 RNA detection in CSF or blood. CNS damage was still detectable after discharge in blood of COVID-19 patients who developed ARDS during hospitalization.


Assuntos
Barreira Hematoencefálica , COVID-19 , Axônios , Humanos , RNA Viral , SARS-CoV-2
18.
Toxicology ; 472: 153179, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35429622

RESUMO

Toxic effects of lead (Pb) are principally manifested in the central nervous system (CNS) and a mounting body of evidence indicates that excessive chronic exposure to Pb participates in the pathological processes of numerous neurodegenerative disorders in humans.In this study we evaluated whether the prolonged pre- and postnatal exposure of rat pups to lead, administrated through ingestion in drinking water, as a typical environmental exposure, can determine alterations of the protein pattern of CNS myelin and the induction of myelin-associated proteinases. Pregnant dams were given distilled water or 0.3 mg/mL lead acetate in drinking water during gestation and lactation. At postnatal day (PND) 21, pups born from mothers poisoned with Pb continued the treatment with the metal. On PND 35 and 56, pups were sacrificed, and brains were subjected to myelin purification and extraction of myelin-associated proteinases. The SDS-PAGE analysis of protein pattern of myelin incubated in vitro with an oxidative system indicated that myelin proteins from Pb-treated pups were more sensitive to the toxicity of reactive oxygen species in comparison with those from untreated pups. The zymografic analysis of NaCl-extracts from myelin of Pb-treated pups showed a band of digestion of 54 kDa that increased in pups sacrificed at PND 56 in comparison with those sacrificed at PND 35 and correlated with the concentration of Pb, detected in purified myelin. The incubation of the NaCl-extract from Pb-treated pups with purified myelin basic protein (MBP) evidenced the presence of different MBP-degrading activities. These results suggest that Pb may influence the integrity of the myelin sheath, probably through the induction of anti-myelin proteinases.


Assuntos
Água Potável , Intoxicação do Sistema Nervoso por Chumbo , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Feminino , Humanos , Chumbo/toxicidade , Bainha de Mielina , Peptídeo Hidrolases , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Cloreto de Sódio/toxicidade
19.
Inflammopharmacology ; 29(2): 561-571, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33196947

RESUMO

Isothiocyanates (ITCs), present as glucosinolate precursors in cruciferous vegetables, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of three different ITCs on ROS production and on the expression of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of various neurological diseases. Primary cultures of rat astrocytes were activated by LPS and simultaneously treated with different doses of Allyl isothiocyanate (AITC), 2-Phenethyl isothiocyanate (PEITC) and 2-Sulforaphane (SFN). Results showed that SFN and PEITC were able to counteract ROS production induced by H2O2. The zymographic analysis of cell culture supernatants evidenced that PEITC and SFN were the most effective inhibitors of MMP-9, whereas, only SFN significantly inhibited MMP-2 activity. PCR analysis showed that all the ITCs used significantly inhibited both MMP-2 and MMP-9 expression. The investigation on the mitogen-activated protein kinase (MAPK) signaling pathway demonstrated that ITCs modulate MMP transcription by inhibition of extracellular-regulated protein kinase (ERK) activity. Results of this study suggest that ITCs could be promising nutraceutical agents for the prevention and complementary treatment of neurological diseases associated with MMP involvement.


Assuntos
Isotiocianatos/farmacologia , Fármacos Neuroprotetores/farmacologia , Sulfóxidos/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Inflamação/tratamento farmacológico , Inflamação/patologia , Isotiocianatos/administração & dosagem , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos/administração & dosagem
20.
Sci Rep ; 9(1): 311, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670793

RESUMO

The aim of the study was to investigate the changes of matrix metalloproteinase (MMP)-2 and MMP-9 plasma levels during natalizumab treatment and their correlation with JC virus (JCV) reactivation and T-lymphocyte phenotypic modifications in peripheral blood samples from 34 relapsing-remitting multiple sclerosis (RRMS) patients. MMP-9 levels were assessed by zymography in plasma samples. JCV-DNA was detected through quantitative real time PCR in plasma samples. T-lymphocyte phenotype was assessed with flow cytometry. MMP-9 plasma levels resulted increased from 12 to 24 natalizumab infusions. Stratifying plasma samples according to JCV-DNA detection, MMP-9 plasma levels were significantly increased in JCV-DNA positive than JCV-DNA negative samples. MMP-9 plasma levels resulted positively correlated with JCV viral load. CD4 immune senescence, CD8 immune activation and CD8 effector percentages were positively correlated to MMP-9 plasma levels, whereas a negative correlation between CD8 naïve percentages and MMP-9 plasma levels was found. Our data indicate an increase of MMP-9 plasma levels between 12 and 24 natalizumab infusions and a correlation with JCV-DNA detection in plasma, T-lymphocyte immune activation and senescence. These findings could contribute to understand PML pathogenesis under natalizumab treatment, suggesting a potential role of MMP-9 as a predictive marker of PML in RRMS patients.


Assuntos
Vírus JC/fisiologia , Metaloproteinase 9 da Matriz/sangue , Esclerose Múltipla/virologia , Natalizumab/uso terapêutico , DNA Viral , Feminino , Humanos , Imunidade , Leucoencefalopatia Multifocal Progressiva/diagnóstico , Leucoencefalopatia Multifocal Progressiva/etiologia , Masculino , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Esclerose Múltipla Recidivante-Remitente , Linfócitos T/imunologia , Ativação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA