Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400930, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847291

RESUMO

Electrohydrodynamic (EHD) direct-writing has recently gained attention as a highly promising additive manufacturing strategy for fabricating intricate micro/nanoscale architectures. This technique is particularly well-suited for mimicking the extracellular matrix (ECM) present in biological tissue, which serves a vital function in facilitating cell colonization, migration, and growth. The integration of EHD direct-writing with other techniques has been employed to enhance the biological performance of scaffolds, and significant advancements have been made in the development of tailored scaffold architectures and constituents to meet the specific requirements of various biomedical applications. Here, a comprehensive overview of EHD direct-writing is provided, including its underlying principles, demonstrated materials systems, and biomedical applications. A brief chronology of EHD direct-writing is provided, along with an examination of the observed phenomena that occur during the printing process. The impact of biomaterial selection and architectural topographic cues on biological performance is also highlighted. Finally, the major limitations associated with EHD direct-writing are discussed.

2.
Adv Sci (Weinh) ; 11(7): e2304332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032118

RESUMO

Microfluidic 3D cell culture devices that enable the recapitulation of key aspects of organ structures and functions in vivo represent a promising preclinical platform to improve translational success during drug discovery. Essential to these engineered devices is the spatial patterning of cells from different tissue types within a confined microenvironment. Traditional fabrication strategies lack the scalability, cost-effectiveness, and rapid prototyping capabilities required for industrial applications, especially for processes involving thermoplastic materials. Here, an approach to pattern fluid guides inside microchannels is introduced by establishing differential hydrophilicity using pressure-sensitive adhesives as masks and a subsequent selective coating with a biocompatible polymer. Optimal coating conditions are identified using polyvinylpyrrolidone, which resulted in rapid and consistent hydrogel flow in both the open-chip prototype and the fully bonded device containing additional features for medium perfusion. The suitability of the device for dynamic 3D cell culture is tested by growing human hepatocytes in the device under controlled fluid flow for a 14-day period. Additionally, the study demonstrated the potential of using the device for pharmaceutical high-throughput screening applications, such as predicting drug-induced liver injury. The approach offers a facile strategy of rapid prototyping thermoplastic microfluidic organ chips with varying geometries, microstructures, and substrate materials.


Assuntos
Hepatócitos , Microfluídica , Humanos , Microfluídica/métodos , Técnicas de Cultura de Células em Três Dimensões , Hidrogéis
3.
Adv Mater Technol ; 7(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35754760

RESUMO

The design and manufacture of an origami-based liver-on-a-chip device are presented, together with demonstrations of the chip's effectiveness at recapitulating some of the liver's key in vivo architecture, physical microenvironment, and functions. Laser-cut layers of polyimide tape are folded together with polycarbonate nanoporous membranes to create a stack of three adjacent flow chambers separated by the membranes. Endothelial cells are seeded in the upper and lower flow chambers to simulate sinusoids, and hepatocytes are seeded in the middle flow chamber. Nutrients and metabolites flow through the simulated sinusoids and diffuse between the vascular pathways and the hepatocyte layers, mimicking physiological microcirculation. Studies of cell viability, metabolic functions, and hepatotoxicity of pharmaceutical compounds show that the endothelialized liver-on-a-chip model is conducive to maintaining hepatocyte functions and evaluation of the hepatotoxicity of drugs. Our unique origami approach speeds chip development and optimization, effectively simplifying the laboratory-scale fabrication of on-chip models of human tissues without necessarily reducing their structural and functional sophistication.

5.
Micromachines (Basel) ; 11(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861298

RESUMO

Modular microfluidics offer the opportunity to combine the precise fluid control, rapid sample processing, low sample and reagent volumes, and relatively lower cost of conventional microfluidics with the flexible reconfigurability needed to accommodate the requirements of target applications such as drug toxicity studies. However, combining the capabilities of fully adaptable modular microelectromechanical systems (MEMS) assembly with the simplicity of conventional microfluidic fabrication remains a challenge. A hybrid polydimethylsiloxane (PDMS)-molding/photolithographic process is demonstrated to rapidly fabricate LEGO®-like modular blocks. The blocks are created with different sizes that interlock via tongue-and-groove joints in the plane and stack via interference fits out of the plane. These miniature strong but reversible connections have a measured resistance to in-plane and out-of-plane forces of up to >6000× and >1000× the weight of the block itself, respectively. The LEGO®-like interference fits enable O-ring-free microfluidic connections that withstand internal fluid pressures of >120 kPa. A single layer of blocks is assembled into LEGO®-like cell culture plates, where the in vitro biocompatibility and drug toxicity to lung epithelial adenocarcinoma cells and hepatocellular carcinoma cells cultured in the modular microwells are measured. A double-layer block structure is then assembled so that a microchannel formed at the interface between layers connects two microwells. Breast tumor cells and hepatocytes cultured in the coupled wells demonstrate interwell migration as well as the simultaneous effects of a single drug on the two cell types.

6.
Micromachines (Basel) ; 9(7)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30424298

RESUMO

Small-scale, out-of-plane actuators can enable tactile interfaces; however, achieving sufficient actuator force and displacement can require larger actuators. In this work, 2-mm² out-of-plane microactuators were created, and were demonstrated to output up to 6.3 µm of displacement and 16 mN of blocking force at 170 V. The actuators converted in-plane force and displacement from a piezoelectric extensional actuator into out-of-plane force and displacement using robust, microelectromechanical systems (MEMS)-enabled, half-scissor amplifiers. The microscissors employed two layers of lithographically patterned SU-8 epoxy microstructures, laminated with a thin film of structural polyimide and adhesive to form compact flexural hinges that enabled the actuators' small area. The self-aligned manufacture minimized assembly error and fabrication complexity. The scissor design dominated the actuators' performance, and the effects of varying scissor angle, flexure thickness, and adhesive type were characterized to optimize the actuators' output. Reducing the microscissor angle yielded the highest actuator performance, as it maximized the amplification of the half-scissor's displacement and minimized scissor deformation under externally applied loads. The actuators' simultaneously large displacements and blocking forces for their size were quantified by a high displacement-blocking force product per unit area of up to 50 mN·µm/mm². For a linear force⁻displacement relationship, this corresponds to a work done per unit area of 25 mN·µm/mm².

7.
Micromachines (Basel) ; 7(4)2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-30407440

RESUMO

A technique for shape-selective directed assembly of anisotropic, deformable, chemically-identical microcomponents onto patterned rigid templates based on shape and size differences is modeled and demonstrated. The assembly method not only controls the selective placement of the components, but also aligns the components with the assembly sites. Unlike the assembly of isotropic (spherical) microcomponents, in which only size differences can be used to discriminate among chemically-identical components to achieve selective placement, differences in both shape and size can enable selectivity in the assembly of anisotropic (non-spherical) microcomponents. The present selective directed assembly is driven by shape-matching to a microfabricated template to provide selectivity, uniform chemical surface functionalization to promote assembly, and megasonic excitation to prevent assembly into poorly shape-matched binding sites. A theoretical framework quantifies the predicted selectivity of this approach and predicts that it will be effective for many material combinations, including hydrogels and bio-compatible polymers. Experiments demonstrate successful directed assembly of cylindrical, hydrogel colloidal microcomponents with 26 µm mean diameter and 50 µm length into silicon templates patterned with hemicylindrical assembly sites. During the assembly, tapered microcomponents with 150 µm length and a nominal diameter of 26 µm that decreases along the components' lengths were successfully excluded from hemicylindrical assembly sites. These results provide the first demonstration of selective directed assembly of non-spherical microcomponents by this approach. The assembly shows high local yields in agreement with theory.

8.
Lab Chip ; 14(17): 3385-93, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25005723

RESUMO

Precise, size-selective assembly and sorting are demonstrated in a low-cost system using manufacturable, replicated polymer templates to guide the assembly. Surface interactions between microscale objects and an assembly template are combined with fluid forces to drive site-selective organization of objects onto the template. Although controlling the organization of deformable objects on deformable surfaces offers a key tool for biological applications, the deformability can potentially interfere with the process that drives size selectivity. Theoretical models of the polymer assembly system were created to predict when selectivity will fail in deformable systems and were validated by comparison with experiments. Selective template-driven assembly of polystyrene microspheres on PDMS templates replicated from silicon masters was carried out using templated assembly by selective removal (TASR), demonstrating the effectiveness of selective assembly with low-cost, manufacturable materials and processes. The assembly of polystyrene microcomponents on PDMS shows high assembly yields and effective selectivity, in agreement with models.


Assuntos
Materiais Biocompatíveis , Desenho de Equipamento , Modelos Teóricos
9.
ACS Appl Mater Interfaces ; 5(15): 7198-207, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23876225

RESUMO

This work presents a study of the tensile mechanical properties of millimeter-long fibers comprising carbon nanotubes (CNTs). These CNT fibers are made of aligned, loosely packed parallel networks of CNTs that are grown in and harvested from CNT forests without drawing or spinning. Unlike typical CNT yarn, the present fibers contain a large fraction of CNTs that span the fibers' entire gauge length. The fibers are densified after growth and network formation to study how increasing the degree of interaction among CNTs in a network by various methods influences and limits the mechanical behavior of macroscopic CNT materials, particularly for the case in which the continuity of a large fraction of CNTs across the gauge length prevents failure purely by slip. Densification is carried out using various combinations of capillary-driven densification, mechanical pressure, and twisting. All methods of densification increase the fiber density and modify the nanoscale order of the CNTs. The highest strength and stiffness values (1.8 and 88.7 N tex(-1), respectively) are observed for capillary-densified fibers, whereas the highest toughness values (94 J g(-1)) and maximum reversible energy density (1.35 kJ kg(-1) or 677 kJ m(-3)) are observed for fibers densified by mechanical pressure. The results suggest that the path to higher performance CNT materials may lie not only in the use of continuous and long CNTs but also in controlling their density and nanoscale ordering through modification of the as-grown networks, such as by capillary-driven densification.

10.
Lab Chip ; 11(13): 2204-11, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21614404

RESUMO

This work presents the size-selective sorting of single biological cells using the assembly process known as templated assembly by selective removal (TASR). We have demonstrated experimentally, for the first time, the selective placement and sorting of single SF9 cells (clonal isolate derived from Spodoptera frugiperda (Fall Armyworm) IPLB-Sf21-AE cells) into patterned hemispherical sites on rigid assembly templates using TASR. Nearly 100% of the assembly sites on the template were filled with matching cells (with assembly density as high as 900 sites per mm(2)) within short time spans of 3 minutes. 3-D reconstruction of cell profiles and volume analysis of cells trapped inside assembly sites demonstrates that only those cells that match the assembly site precisely (within 0.5 µm) in size are assembled on the template. The assembly conditions are also compatible with the extension of TASR to mammalian cells. TASR-based size-selective structuring and sorting of biological systems represents a valuable tool with potential for implementation in biological applications such as cell sorting for medical research or diagnostics, templating for artificial tissue replication, or isolation of single cells for the study of biological or mechanical behavior.


Assuntos
Acústica/instrumentação , Separação Celular/instrumentação , Dispositivos Lab-On-A-Chip , Animais , Linhagem Celular , Análise de Célula Única
11.
Nanotechnology ; 19(28): 285602, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-21828733

RESUMO

The use of templated assembly by selective removal to simultaneously and selectively assemble silica microspheres of two different diameters into designated sites on a surface was demonstrated. Microspheres with diameters of 636 nm and 2 µm were assembled from fluid onto templates patterned to contain holes that matched the shapes and sizes of the spherical components. The assembly experiments were carried out for a range of experimental conditions, including different fluid compositions and different intensities for the fluid excitation. A comparison of the measured assembly yield with the yield predicted using a model based on the work of Jung and co-workers (Jung et al 2005 Nano Lett. 5 2188-94) shows excellent agreement, indicating the applicability of the model over a broad range of experimental conditions. High yield is both expected and observed when the ratio of the moment that retains components in their locations to the moment that removes components from their locations is greater than 1, as long as stirring of the fluid medium is sufficient.

12.
Nano Lett ; 5(11): 2188-94, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16277451

RESUMO

A site-selective self-assembly technique called templated assembly by selective removal is introduced. Initial experiments demonstrated selective assembly of 1.58 mum microspheres into shape-matched holes in a lithographically defined template. Very high frequency ultrasound selectively removes components from poorly matched holes. The successful demonstration of the technique was supported by detailed understanding and calculation of the kinematics of component removal in the ultrasonic field. The technique is expected to be scalable to smaller component sizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA