Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 45(7): 392-404, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014502

RESUMO

Molecular quantum-dot cellular automata (QCA) is a low-power computing paradigm that may offer ultra-high device densities and THz-speed switching at room temperature. A single mixed-valence (MV) molecule acts as an elementary QCA device known as a cell. Cells coupled locally via the electrostatic field form logic circuits. However, previously-synthesized ionic MV molecular cells are affected by randomly-located, nearby neutralizing counterions that can bias device states or change device characteristics, causing incorrect computational results. This ab initio study explores how non-biasing counterions affect individual molecular cells. Additionally, we model two novel neutral, zwitterionic MV QCA molecules designed to avoid biasing and other undesirable counterionic effects. The location of the neutralizing counterion is controlled by integrating one counterion into each cell at a well-defined, non-biasing location. Each zwitterionic QCA candidate molecule presented here has a fixed, integrated counterion, which neutralizes the mobile charges used to encode the device state.

2.
Nanotechnology ; 33(46)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35944440

RESUMO

Quantum-dot cellular automata (QCA) is a nanoscale, transistor-less device technology. A single molecule may provide an elementary QCA device known as a cell. Molecular redox centers function as quantum dots, and the configuration of mobile charge on the dots encodes device states useful for classical computing. Molecular QCA may support ultra-high device densities and THz-scale switching speeds at room temperature. An applied electric field may be used to clock molecular QCA, providing power gain to boost weakened signals, as well as quasi-adiabatic device operation for minimal power dissipation in QCA devices and circuits. A zwitterionic, Y-shaped, three-dot molecule may function as a field-clocked QCA cell. We focus on the design of a counterion built into the center of the cell.Ab initiocomputations demonstrate that choice of counterion determines the number of mobile charges for encoding the device state on the three quantum dots. We useB5H52-orB4CH5-as the central counterionic linker for two different Y-shaped, three-dot QCA molecules. While both molecules support the desired device states, the number of trapped charges in the counterion determines the number of mobile holes on the molecular quantum dots. This, in turn, determines whether the device state is encoded by a hole or an electron. This choice of encoding determines how the molecular QCA cell responds to a clocking field. The two counterions studied here lead to two QCA molecules with opposite responses to the clock, similar to the complementary responses of PMOS and NMOS transistors to gated voltage control.

3.
Nanotechnology ; 33(11)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34875643

RESUMO

Mixed-valence compounds may provide molecular devices for an energy-efficient, low-power, general-purpose computing paradigm known as quantum-dot cellular automata (QCA). Multiple redox centers on mixed-valence molecules provide a system of coupled quantum dots. The configuration of mobile charge on a double-quantum-dot (DQD) molecule encodes a bit of classical information robust at room temperature. When arranged in non-homogeneous patterns (circuits) on a substrate, local Coulomb coupling between molecules enables information processing. While single-electron transistors and single-electron boxes could provide low-temperature solutions for reading the state of a ∼1 nm scale molecule, we propose a room-temperature read-out scheme. Here, DQD molecules are designed with slightly dissimilar quantum dots.Ab initiocalculations show that the binary device states of an asymmetric molecule have distinct Raman spectra. Additionally, the dots are similar enough that mobile charge is not trapped on either dot, allowing device switching driven by the charge configuration of a neighbor molecule. A technique such as tip-enhanced Raman spectroscopy could be used to detect the state of a circuit comprised of several QCA molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA