RESUMO
Rising surface temperatures are projected to cause more frequent and intense droughts in the world's drylands. This can lead to land degradation, mobilization of soil particles, and an increase in dust aerosol emissions from arid and semi-arid regions. Dust aerosols are a key source of bio-essential nutrients, can be transported in the atmosphere over large distances, and ultimately deposited onto the ocean's surface, alleviating nutrient limitation and increasing oceanic primary productivity. Currently, the linkages between desertification, dust emissions and ocean fertilization remain poorly understood. Here, we show that dust emitted from Southern Africa was transported and deposited into the nutrient-limited surface waters southeast of Madagascar, which stimulated the strongest phytoplankton bloom of the last two decades during a period of the year when blooms are not expected. The conditions required for triggering blooms of this magnitude are anomalous, but current trends in air temperatures, aridity, and dust emissions in Southern Africa suggest that such events could become more probable in the future. Together with the recent findings on ocean fertilization by drought-induced megafires in Australia, our results point toward a potential link between global warming, drought, aerosol emissions, and ocean blooms.
RESUMO
At high latitudes, the biological carbon pump, which exports organic matter from the surface ocean to the interior, has been attributed to the gravitational sinking of particulate organic carbon. Conspicuous deficits in ocean carbon budgets challenge this as a sole particle export pathway. Recent model estimates revealed that particle injection pumps have a comparable downward flux of particulate organic carbon to the biological gravitational pump, but with different seasonality. To date, logistical constraints have prevented concomitant and extensive observations of these mechanisms. Here, using year-round robotic observations and recent advances in bio-optical signal analysis, we concurrently investigated the functioning of two particle injection pumps, the mixed layer and eddy subduction pumps, and the gravitational pump in Southern Ocean waters. By comparing three annual cycles in contrasting physical and biogeochemical environments, we show how physical forcing, phytoplankton phenology and particle characteristics influence the magnitude and seasonality of these export pathways, with implications for carbon sequestration efficiency over the annual cycle.
RESUMO
Droughts and climate-change-driven warming are leading to more frequent and intense wildfires1-3, arguably contributing to the severe 2019-2020 Australian wildfires4. The environmental and ecological impacts of the fires include loss of habitats and the emission of substantial amounts of atmospheric aerosols5-7. Aerosol emissions from wildfires can lead to the atmospheric transport of macronutrients and bio-essential trace metals such as nitrogen and iron, respectively8-10. It has been suggested that the oceanic deposition of wildfire aerosols can relieve nutrient limitations and, consequently, enhance marine productivity11,12, but direct observations are lacking. Here we use satellite and autonomous biogeochemical Argo float data to evaluate the effect of 2019-2020 Australian wildfire aerosol deposition on phytoplankton productivity. We find anomalously widespread phytoplankton blooms from December 2019 to March 2020 in the Southern Ocean downwind of Australia. Aerosol samples originating from the Australian wildfires contained a high iron content and atmospheric trajectories show that these aerosols were likely to be transported to the bloom regions, suggesting that the blooms resulted from the fertilization of the iron-limited waters of the Southern Ocean. Climate models project more frequent and severe wildfires in many regions1-3. A greater appreciation of the links between wildfires, pyrogenic aerosols13, nutrient cycling and marine photosynthesis could improve our understanding of the contemporary and glacial-interglacial cycling of atmospheric CO2 and the global climate system.