Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
New Phytol ; 213(2): 751-763, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27611966

RESUMO

The currently accepted model of recombination-dependent replication (RDR) in plant mitochondrial DNA (mtDNA) does not clearly explain how RDR progresses and how highly complex mtDNA develops. This study aimed to investigate the correlation between RDR and mtDNA complexity during mitochondrial development in mung bean (Vigna radiata) seed, and the initiation and processing of RDR in plant mitochondria. Flow cytometry, pulsed-field gel electrophoresis, electron microscopy, real-time PCR and biochemical studies were used in this study. The highly dynamic changes in mtDNA complexity correspond to mtDNA RDR activity throughout mitochondrial development. With in vitro freeze-thaw treatment or prolonged in vivo cold incubation, the mtDNA rosette core disappeared and the rosette structure converted to a much longer linear DNA structure. D-loops, Holliday junctions and putative RDR forks often appeared near the rosette cores. We hypothesize that the rosette core may consist of condensed mtDNA and a replication starting sequence, and play an initial and central role in RDR. The satellite cores in the rosette structure may represent the re-initiation sites of mtDNA RDR in the same parental molecule, thereby forming highly complex and giant mitochondrial molecules, representing the RDR intermediates, in vivo.


Assuntos
Cotilédone/crescimento & desenvolvimento , Replicação do DNA/genética , DNA Mitocondrial/genética , Fabaceae/embriologia , Germinação/genética , Mitocôndrias/metabolismo , Sementes/embriologia , Cotilédone/genética , DNA Mitocondrial/ultraestrutura , Fabaceae/genética , Congelamento , Mitocôndrias/ultraestrutura , Modelos Biológicos , Conformação de Ácido Nucleico , Recombinação Genética/genética , Sementes/genética
3.
Plant Cell ; 28(10): 2586-2602, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27702772

RESUMO

RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking.


Assuntos
Vírus Auxiliares/genética , RNA de Plantas/genética , RNA Satélite/genética , Ribonucleoproteínas/metabolismo , Proteínas Virais/genética , Imunoprecipitação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Plant Cell ; 23(10): 3727-44, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21984697

RESUMO

Here, a large fraction of plant mitochondrial actin was found to be resistant to protease and high-salt treatments, suggesting it was protected by mitochondrial membranes. A portion of this actin became sensitive to protease or high-salt treatment after removal of the mitochondrial outer membrane, indicating that some actin is located inside the mitochondrial outer membrane. The import of an actin-green fluorescent protein (GFP) fusion protein into the mitochondria in a transgenic plant, actin:GFP, was visualized in living cells and demonstrated by flow cytometry and immunoblot analyses. Polymerized actin was found in mitochondria of actin:GFP plants and in mung bean (Vigna radiata). Notably, actin associated with mitochondria purified from early-developing cotyledons during seed germination was sensitive to high-salt and protease treatments. With cotyledon ageing, mitochondrial actin became more resistant to both treatments. The progressive import of actin into cotyledon mitochondria appeared to occur in concert with the conversion of quiescent mitochondria into active forms during seed germination. The binding of actin to mitochondrial DNA (mtDNA) was demonstrated by liquid chromatography-tandem mass spectrometry analysis. Porin and ADP/ATP carrier proteins were also found in mtDNA-protein complexes. Treatment with an actin depolymerization reagent reduced the mitochondrial membrane potential and triggered the release of cytochrome C. The potential function of mitochondrial actin and a possible actin import pathway are discussed.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Mitocôndrias/metabolismo , Phaseolus/metabolismo , Sequência de Aminoácidos , Cotilédone/genética , Cotilédone/metabolismo , Cotilédone/ultraestrutura , Citocromos c/metabolismo , DNA Mitocondrial/genética , Germinação/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Nucleoproteínas/metabolismo , Peptídeo Hidrolases/farmacologia , Phaseolus/efeitos dos fármacos , Phaseolus/genética , Phaseolus/ultraestrutura , Plantas Geneticamente Modificadas , Porinas/metabolismo , Cloreto de Potássio/farmacologia , Transporte Proteico , Proteínas Recombinantes de Fusão , Plântula/genética , Plântula/metabolismo , Plântula/ultraestrutura , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/metabolismo , Sementes/ultraestrutura
5.
Mol Cells ; 31(3): 217-24, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21347700

RESUMO

Electron microscopic images of mitochondrial nucleoids isolated from mung bean seedlings revealed a relatively homogeneous population of particles, each consisting of a chromatin-like structure associated with a membrane component. Association of F-actin with mitochondrial nucleoids was also observed. The mitochondrial nucleoid structure identified in situ showed heterogeneous genomic organization. After pulsed-field gel electrophoresis (PFGE), a large proportion of the mitochondrial nucleoid DNA remained in the well, whereas the rest migrated as a 50-200 kb smear zone. This PFGE migration pattern was not affected by high salt, topoisomerase I or latrunculin B treatments; however, the mobility of a fraction of the fast-moving DNA decreased conspicuously following an in-gel ethidium-enhanced UV-irradiation treatment, suggesting that molecules with intricately compact structures were present in the 50-200 kb region. Approximately 70% of the mitochondrial nucleoid DNA molecules examined via electron microscopy were open circles, supercoils, complex forms, and linear molecules with interspersed sigma-shaped structures and/or loops. Increased sensitivity of mtDNA to DNase I was found after mitochondrial nucleoids were pretreated with high salt. This result indicates that some loosely bound or peripheral DNA binding proteins protected the mtDNA from DNase I degradation.


Assuntos
Cotilédone/genética , DNA Mitocondrial/ultraestrutura , Conformação de Ácido Nucleico , Phaseolus/genética , Plântula/genética , Sementes/genética , Actinas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/química , Cardiolipinas/metabolismo , Cotilédone/ultraestrutura , DNA Topoisomerases Tipo I/metabolismo , DNA Mitocondrial/metabolismo , Eletroforese em Gel Bidimensional , Microscopia Eletrônica , Membranas Mitocondriais/metabolismo , Phaseolus/ultraestrutura , Plântula/ultraestrutura , Sementes/ultraestrutura , Cloreto de Sódio/química , Tiazolidinas/química
6.
Nucleic Acids Res ; 33(15): 4725-39, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16116038

RESUMO

Mitochondrial nucleoids isolated from mung bean seedlings exhibited a chromatin-like structure associated with a membrane component. A similar structure, which underwent discrete changes during cotyledon development, was identified in situ. Isolated nucleoids consisted of essentially the same phospholipids, including cardiolipin, as whole mitochondria and proteins of inner- and outer-mitochondrial-membrane origin. Actin was consistently found with mitochondrial nucleoids prepared with different detergent concentrations. Formaldehyde cross-linking of cytochalasin B- and proteinase K-treated mitochondria further revealed that actin was associated with DNA in nucleoids. Mitochondrial nucleoids were self-sufficient in directing DNA synthesis in vitro in a pattern mimicking mtDNA synthesis in isolated mitochondria. In pulse-field gel electrophoresis, newly synthesized mtDNA separated into two major components, well-bound and fast-moving forms. Nucleoids DNA synthesis was resistant to aphidicolin but sensitive to N-ethylmaleimide, which indicates that a gamma-type DNA polymerase was responsible for this activity. Mitochondrial nucleoids were capable of self-directed RNA transcription in a non-random fashion in vitro. Consistent with and complementary to results from fungi and human cells done mostly in situ, our present work helps to establish the important paradigm that mitochondrial nucleoids in eukaryotes are more than mere mtDNA compaction and segregation entities but are centers of mtDNA maintenance and expression.


Assuntos
DNA Mitocondrial/biossíntese , DNA Mitocondrial/ultraestrutura , Fabaceae/genética , Mitocôndrias/genética , Cromatina/ultraestrutura , DNA Mitocondrial/química , DNA de Plantas/biossíntese , DNA de Plantas/química , DNA de Plantas/ultraestrutura , Fabaceae/ultraestrutura , Membranas Intracelulares/química , Mitocôndrias/química , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/análise , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA