Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Cancer ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031959

RESUMO

Oxford Nanopore Technologies sequencing, also referred to as Nanopore sequencing, stands at the forefront of a revolution in clinical genetics, offering the potential for rapid, long read, and real-time DNA and RNA sequencing. This technology is currently making sequencing more accessible and affordable. In this comprehensive review, we explore its potential regarding precision cancer diagnostics and treatment. We encompass a critical analysis of clinical cases where Nanopore sequencing was successfully applied to identify point mutations, splice variants, gene fusions, epigenetic modifications, non-coding RNAs, and other pivotal biomarkers that defined subsequent treatment strategies. Additionally, we address the challenges of clinical applications of Nanopore sequencing and discuss the current efforts to overcome them.

2.
Front Immunol ; 13: 922252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911762

RESUMO

NK cells play a pivotal role in viral immunity, utilizing a large array of activating and inhibitory receptors to identify and eliminate virus-infected cells. Killer-cell immunoglobulin-like receptors (KIRs) represent a highly polymorphic receptor family, regulating NK cell activity and determining the ability to recognize target cells. Human leukocyte antigen (HLA) class I molecules serve as the primary ligand for KIRs. Herein, HLA-C stands out as being the dominant ligand for the majority of KIRs. Accumulating evidence indicated that interactions between HLA-C and its inhibitory KIR2DL receptors (KIR2DL1/L2/L3) can drive HIV-1-mediated immune evasion and thus may contribute to the intrinsic control of HIV-1 infection. Of particular interest in this context is the recent observation that HIV-1 is able to adapt to host HLA-C genotypes through Vpu-mediated downmodulation of HLA-C. However, our understanding of the complex interplay between KIR/HLA immunogenetics, NK cell-mediated immune pressure and HIV-1 immune escape is still limited. Therefore, we investigated the impact of specific KIR/HLA-C combinations on the NK cell receptor repertoire and HIV-1 Vpu protein sequence variations of 122 viremic, untreated HIV-1+ individuals. Compared to 60 HIV-1- controls, HIV-1 infection was associated with significant changes within the NK cell receptor repertoire, including reduced percentages of NK cells expressing NKG2A, CD8, and KIR2DS4. In contrast, the NKG2C+ and KIR3DL2+ NK cell sub-populations from HIV-1+ individuals was enlarged compared to HIV-1- controls. Stratification along KIR/HLA-C genotypes revealed a genotype-dependent expansion of KIR2DL1+ NK cells that was ultimately associated with increased binding affinities between KIR2DL1 and HLA-C allotypes. Lastly, our data hinted to a preferential selection of Vpu sequence variants that were associated with HLA-C downmodulation in individuals with high KIR2DL/HLA-C binding affinities. Altogether, our study provides evidence that HIV-1-associated changes in the KIR repertoire of NK cells are to some extent predetermined by host KIR2DL/HLA-C genotypes. Furthermore, analysis of Vpu sequence polymorphisms indicates that differential KIR2DL/HLA-C binding affinities may serve as an additional mechanism how host genetics impact immune evasion by HIV-1.


Assuntos
Infecções por HIV , HIV-1 , Genótipo , Antígenos HLA-C/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Células Matadoras Naturais , Ligantes , Receptores KIR/metabolismo , Receptores de Células Matadoras Naturais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Viroporinas
3.
Cells ; 10(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34831331

RESUMO

The human leukocyte antigen system (HLA) is a cluster of highly polymorphic genes essential for the proper function of the immune system, and it has been associated with a wide range of diseases. HLA class I molecules present intracellular host- and pathogen-derived peptides to effector cells of the immune system, inducing immune tolerance in healthy conditions or triggering effective immune responses in pathological situations. HLA-C is the most recently evolved HLA class I molecule, only present in humans and great apes. Differentiating from its older siblings, HLA-A and HLA-B, HLA-C exhibits distinctive features in its expression and interaction partners. HLA-C serves as a natural ligand for multiple members of the killer-cell immunoglobulin-like receptor (KIR) family, which are predominately expressed by natural killer (NK) cells. NK cells are crucial for the early control of viral infections and accumulating evidence indicates that interactions between HLA-C and its respective KIR receptors determine the outcome and progression of viral infections. In this review, we focus on the unique role of HLA-C in regulating NK cell functions and its consequences in the setting of viral infections.


Assuntos
Antígenos HLA-C/imunologia , Imunidade , Células Matadoras Naturais/imunologia , Vírus/imunologia , Animais , Antígenos HLA-C/química , Humanos , Modelos Biológicos , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA