Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 31(50): 505704, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31484172

RESUMO

The magnetoelectric effect in the RX3(BO3)4 system (R = Ho, Eu, Sm, Nd, Gd; X = Fe, Al) varies significantly with the cation R despite very similar structural arrangements. Our structural studies reveal a symmetry reducing tilting of the BO3 planes and of the FeO6 polyhedra in the systems exhibiting low magnetic field induced electric polarization. Neutron scattering measurements reveal a lack of magnetic ordering indicating the primary importance of the atomic structure in the multiferroic behavior of this system.

2.
Phys Rev Lett ; 122(21): 217002, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283343

RESUMO

By means of infrared spectroscopy, we determine the temperature-doping phase diagram of the Fano effect for the in-plane Fe-As stretching mode in Ba_{1-x}K_{x}Fe_{2}As_{2}. The Fano parameter 1/q^{2}, which is a measure of the phonon coupling to the electronic particle-hole continuum, shows a remarkable sensitivity to the magnetic and structural orderings at low temperatures. Most strikingly, at elevated temperatures in the paramagnetic tetragonal state we observe a linear correlation between 1/q^{2} and the superconducting critical temperature T_{c}. Based on theoretical calculations and symmetry considerations, we identify the relevant interband transitions that are coupled to the Fe-As mode. In particular, we show that a sizable xy orbital component at the Fermi level is fundamental for the Fano effect and, thus, possibly also for the superconducting pairing.

3.
J Phys Condens Matter ; 27(4): 045702, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25563348

RESUMO

Superconducting Pr(2)CuO(x), x ≃ 4 films with T' structure and a T(c) of 27 K have been investigated by millimeter-wave transmission and broadband (infrared-to-ultraviolet) reflectivity measurements in the normal and superconducting state. The results obtained by both experimental methods show a consistent picture of the superconducting condensate formation below T(c). An Eliashberg analysis of the data proves d-wave superconductivity and unitary-limit impurity scattering of the charge carriers below T(c). The derived electron-exchange boson interaction spectral function I(2)χ(ω) shows only marginal changes at the superconducting transition with the mass enhancement factor λ, the first inverse moment of I(2)χ(ω), being equal to 4.16 at 30 K and to 4.25 at 4 K.

4.
Phys Rev Lett ; 111(11): 117001, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24074114

RESUMO

The optical properties of Ba0.6K0.4Fe2As2 have been determined in the normal state for a number of temperatures over a wide frequency range. Two Drude terms, representing two groups of carriers with different scattering rates (1/τ), well describe the real part of the optical conductivity σ1(ω). A "broad" Drude component results in an incoherent background with a T-independent 1/τb, while a "narrow" Drude component reveals a T-linear 1/τn resulting in a resistivity ρn≡1/σ1n(ω→0) also linear in temperature. An arctan(T) low-frequency spectral weight is also strong evidence for a T-linear 1/τ. A comparison to other materials with similar behavior suggests that the T-linear 1/τn and ρn in Ba0.6K0.4Fe2As2 originate from scattering from spin fluctuations and hence that an antiferromagnetic quantum critical point is likely to exist in the superconducting dome.

5.
Nat Mater ; 10(12): 936-41, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22019946

RESUMO

The syntheses of strongly anisotropic nanocrystals with one dimension much smaller than the two others, such as nanoplatelets, are still greatly underdeveloped. Here, we demonstrate the formation of atomically flat quasi-two-dimensional colloidal CdSe, CdS and CdTe nanoplatelets with well-defined thicknesses ranging from 4 to 11 monolayers. These nanoplatelets have the electronic properties of two-dimensional quantum wells formed by molecular beam epitaxy, and their thickness-dependent absorption and emission spectra are described very well within an eight-band Pidgeon-Brown model. They present an extremely narrow emission spectrum with full-width at half-maximum less than 40 meV at room temperature. The radiative fluorescent lifetime measured in CdSe nanoplatelets decreases with temperature, reaching 1 ns at 6 K, two orders of magnitude less than for spherical CdSe nanoparticles. This makes the nanoplatelets the fastest colloidal fluorescent emitters and strongly suggests that they show a giant oscillator strength transition.

6.
Phys Rev Lett ; 102(2): 027003, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19257311

RESUMO

The electron-boson spectral density function I;{2}chi(Omega) responsible for carrier scattering of the high temperature superconductor HgBa_{2}CuO_{4+delta} (T_{c}=90 K) is calculated from new data on the optical scattering rate. A maximum entropy technique is used. Published data on HgBa_{2}Ca_{2}Cu_{3}O_{8+delta} (T_{c}=130 K) are also inverted and these new results are put in the context of other known cases. All spectra (with two notable exceptions) show a peak at an energy (Omega_{r}) proportional to the superconducting transition temperature Omega_{r} approximately 6.3k_{B}T_{c}. This charge channel relationship follows closely the magnetic resonance seen by polarized neutron scattering, Omega_{r};{neutron} approximately 5.4k_{B}T_{c}. The amplitudes of both peaks decrease strongly with increasing temperature. In some cases, the peak at Omega_{r} is weak and the spectrum can have additional maxima and a background extending up to several hundred meV.

7.
Phys Rev Lett ; 88(17): 177402, 2002 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-12005783

RESUMO

We have investigated the polaron dynamics in n-doped InAs/GaAs self-assembled quantum dots by pump-probe midinfrared spectroscopy. A long T1 polaron decay time is measured at both low temperature and room temperature, with values around 70 and 37 ps, respectively. The decay time decreases for energies closer to the optical phonon energy. The relaxation is explained by the strong coupling for the electron-phonon interaction and by the finite lifetime of the optical phonons. We show that, even for a large detuning of 19 meV from the LO photon energy in GaAs, the carrier relaxation remains phonon assisted.

8.
Phys Rev Lett ; 88(9): 097005, 2002 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-11864047

RESUMO

The ab-plane reflectance of Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi-2212) thin films was measured in the 30-25 000 cm(-1) range for one underdoped ( T(c) = 70 K), and one overdoped sample ( T(c) = 63 K) down to 10 K. We find similar behaviors in the temperature dependence of the normal-state infrared response of both samples. Above T(c), the effective spectral weight, obtained from the integrated conductivity, does not decrease when T decreases, so that no opening of an optical pseudogap is seen. We suggest that these are consequences of the pseudogap opening in the k = (0,pi) direction and of the in-plane infrared conductivity being mostly sensitive to the k = (pi,pi) direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA