Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 147(2): 812, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32113278

RESUMO

The activities of infaunal organisms, including feeding, locomotion, and home building, alter sediment physical properties including grain size and sorting, porosity, bulk density, permeability, packing, tortuosity, and consolidation behavior. These activities are also known to affect the acoustic properties of marine sediments, although previous studies have demonstrated complicated relationships between infaunal activities and geoacoustic properties. To avoid difficulties associated with real animals, whose exact locations and activities are unknown, this work uses artificial burrows and simulates infaunal activities such as irrigation, compaction, and tube building in controlled laboratory experiments. The results show statistically significant changes in sound speed and attenuation over a frequency range of 100-400 kHz, corresponding to wavelengths on the order of the burrow diameter. The greatest effects were observed for tubes constructed of hard shells which increased the attenuation by ∼30 dB m-1 across the measurement band. These results highlight the importance of biogenic hard structures such as tubes on sound attenuation and suggest that organisms that create hard structures may be good targets for acoustic mapping of infaunal abundance and distribution.

2.
Mar Pollut Bull ; 109(1): 178-183, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27287867

RESUMO

Microplastics (plastic debris smaller than 5mm) represent a growing concern worldwide due to increasing amounts of discarded trash. We investigated microplastic debris on sandy shorelines at seven locations in a northern Gulf of Mexico estuary (Mobile Bay, AL) during the summer of 2014. Microplastics were ubiquitous throughout the area studied at concentrations 66-253× larger than reported for the open ocean. The polymers polypropylene and polyethylene were most abundant, with polystyrene, polyester and aliphatic polyamide also present but in lower quantities. There was a gradient in microplastic abundance, with locations more directly exposed to marine currents and tides having higher microplastic abundance and diversity, as well as a higher contribution by denser polymers (e.g. polyester). These results indicate that microplastic accumulation on shorelines in the northern Gulf of Mexico may be a serious concern, and suggest that exposure to inputs from the Gulf is an important determinant of microplastic abundance.


Assuntos
Sedimentos Geológicos/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Alabama , Baías , Monitoramento Ambiental/métodos , Estuários , Golfo do México , Polietileno/análise , Poliestirenos/análise , Estações do Ano , Água do Mar/química , Resíduos/análise , Resíduos/estatística & dados numéricos
3.
Sensors (Basel) ; 16(4)2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27089337

RESUMO

This project addresses the need for an expansion in the monitoring of marine environments by providing a detailed description of a low cost, robust, user friendly sonde, built on Arduino Mega 2560 (Mega) and Arduino Uno (Uno) platforms. The sonde can be made without specialized tools or training and can be easily modified to meet individual application requirements. The platform allows for internal logging of multiple parameters of which conductivity, temperature, and GPS position are demonstrated. Two design configurations for different coastal hydrographic applications are highlighted to show the robust and versatile nature of this sensor platform. The initial sonde design was intended for use on a Lagrangian style surface drifter that recorded measurements of temperature; salinity; and position for a deployment duration of less than 24 h. Functional testing of the sensor consisted of a 55 h comparison with a regularly maintained water quality sensor (i.e., YSI 6600 sonde) in Mobile Bay, AL. The temperature and salinity data were highly correlated and had acceptable RMS errors of 0.154 °C and 1.35 psu for the environmental conditions. A second application using the sonde platform was designed for longer duration (~3-4 weeks); subsurface (1.5-4.0 m depths) deployment, moored to permanent structures. Design alterations reflected an emphasis on minimizing power consumption, which included the elimination of the GPS capabilities, increased battery capacity, and power-saving software modifications. The sonde designs presented serve as templates that will expand the hydrographic measurement capabilities of ocean scientists, students, and teachers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA