RESUMO
Bovine tuberculosis (bTB) is a chronic inflammatory disease primarily caused by Mycobacterium bovis. The infection affects domestic animals and wildlife, posing a zoonotic risk to humans. To understand the dynamics of transmission and genetic diversity in Italy's M. bovis population, we conducted whole-genome sequencing (WGS) analysis on two prevalent genotypes, belonging to Spoligotype SB0120, identified in different geographical and temporal contexts. By comparing these genomes with international M. bovis isolates, we identified a distinct clade within the lineage La1.2, encompassing the Italian SB0120 isolates, indicating a genomic segregation of Italian M. bovis from other European isolates. Within Italy, a significant level of genetic variability emerged across regions, while isolates within epidemiologically linked outbreaks exhibited minimal genetic diversity. Additionally, isolates derived from cattle and wild boars within a tuberculosis hotspot in Central Italy and from cattle and black pigs in Sicily formed unified clonal clusters. This indicates the presence of persistent strains circulating in the examined regions. The genetic diversity within herds was limited, as specific clones endured over time within certain herds. This research enhances our comprehension of the epidemiology and transmission patterns of bTB in Italy, thereby aiding the development of precise control strategies and disease management. Using WGS and implementing standardized protocols and databases will be pivotal in combating bTB and promoting One-Health approaches to address this noteworthy public health concern.
RESUMO
Spoligotyping and exact tandem repeat (ETR) analysis of Mycobacterium bovis and M. caprae isolated strains has been routinely carried out in Italy since 2000 to obtain a database of genetic profiles and support traditional epidemiological investigations. In this study, we characterized 1,503 M. bovis and 57 M. caprae isolates obtained from 2000 to 2006 in 747 cattle herds mainly located in northern Italy. We identified 81 spoligotypes and 113 ETR profiles, while the combination of spoligotyping/ETR analysis differentiated 228 genotypes, with genotypic diversity indices of 0.70 (spoligotyping), 0.94 (ETR-A to -E typing), and 0.97 (spoligotyping/ETR-A to -E typing), respectively. Despite the high degree of resolution obtained, the spoligotyping/ETR methods were not discriminative enough in the case of genotypes characterized by the combination of SB0120, the predominant spoligotype in Italy, with the most common ETR profiles. To obtain a more informative subset of typing loci, 24 mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) markers were evaluated by analyzing a panel of 100 epidemiologically unrelated SB0120 isolates. The panel was differentiated into 89 profiles with an overall genotypic diversity of 0.987 that could be also achieved by using a minimal group of 13 loci: ETR-A, -B, and -E; MIRU 26 and 40; and VNTR 2163a, 2163b, 3155, 1612, 4052, 1895, 3232, and 3336. The allelic diversity index and the stability of single loci was evaluated to provide the most discriminative genotyping method for locally prevalent strains.