Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ERJ Open Res ; 10(2)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38686182

RESUMO

Early career members of Assembly 3 (Basic and Translational Sciences) of the European Respiratory Society (ERS) summarise the key messages discussed during six selected sessions that took place at the ERS International Congress 2023 in Milan, Italy. Aligned with the theme of the congress, the first session covered is "Micro- and macro-environments and respiratory health", which is followed by a summary of the "Scientific year in review" session. Next, recent advances in experimental methodologies and new technologies are discussed from the "Tissue modelling and remodelling" session and a summary provided of the translational science session, "What did you always want to know about omics analyses for clinical practice?", which was organised as part of the ERS Translational Science initiative's aims. The "Lost in translation: new insights into cell-to-cell crosstalk in lung disease" session highlighted how next-generation sequencing can be integrated with laboratory methods, and a final summary of studies is presented from the "From the transcriptome landscape to innovative preclinical models in lung diseases" session, which links the transcriptome landscape with innovative preclinical models. The wide range of topics covered in the selected sessions and the high quality of the research discussed demonstrate the strength of the basic and translational science being presented at the international respiratory conference organised by the ERS.

2.
Arthritis Rheumatol ; 75(1): 84-97, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36428281

RESUMO

OBJECTIVE: Syk is a cytoplasmic protein tyrosine kinase that plays a role in signaling via B cell and Fc receptors (FcR). FcR engagement and signaling via Syk is thought to be important in antineutrophil cytoplasm antibody (ANCA) IgG-mediated neutrophil activation. This study was undertaken to investigate the role of Syk in ANCA-induced myeloid cell activation and vasculitis pathogenesis. METHODS: Phosphorylation of Syk in myeloid cells from healthy controls and ANCA-associated vasculitis (AAV) patients was analyzed using flow cytometry. The effect of Syk inhibition on myeloperoxidase (MPO)-ANCA IgG activation of cells was investigated using functional assays (interleukin-8 and reactive oxygen species production) and targeted gene analysis with NanoString. Total and phosphorylated Syk at sites of tissue inflammation in patients with AAV was assessed using immunohistochemistry and RNAscope in situ hybridization. RESULTS: We identified increased phosphorylated Syk at critical activatory tyrosine residues in blood neutrophils and monocytes from patients with active AAV compared to patients with disease in remission or healthy controls. Syk was phosphorylated in vitro following MPO-ANCA IgG stimulation, and Syk inhibition was able to prevent ANCA-mediated cellular responses. Using targeted gene expression analysis, we identified up-regulation of FcR- and Syk-dependent signaling pathways following MPO-ANCA IgG stimulation. Finally, we showed that Syk is expressed and phosphorylated in tissue leukocytes at sites of organ inflammation in AAV. CONCLUSION: These findings indicate that Syk plays a critical role in MPO-ANCA IgG-induced myeloid cell responses and that Syk is activated in circulating immune cells and tissue immune cells in AAV; therefore, Syk inhibition may be a potential therapeutic option.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Anticorpos Anticitoplasma de Neutrófilos , Humanos , Inflamação , Receptores Fc , Imunoglobulina G , Imunidade Inata , Peroxidase , Quinase Syk
3.
Immunol Rev ; 314(1): 158-180, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36440666

RESUMO

Neutrophils are the most abundant circulating leukocyte and are crucial to the initial innate immune response to infection. One of their key pathogen-eliminating mechanisms is phagocytosis, the process of particle engulfment into a vacuole-like structure called the phagosome. The antimicrobial activity of the phagocytic process results from a collaboration of multiple systems and mechanisms within this organelle, where a complex interplay of ion fluxes, pH, reactive oxygen species, and antimicrobial proteins creates a dynamic antimicrobial environment. This complexity, combined with the difficulties of studying neutrophils ex vivo, has led to gaps in our knowledge of how the neutrophil phagosome optimizes pathogen killing. In particular, controversy has arisen regarding the relative contribution and integration of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived antimicrobial agents and granule-delivered antimicrobial proteins. Clinical syndromes arising from dysfunction in these systems in humans allow useful insight into these mechanisms, but their redundancy and synergy add to the complexity. In this article, we review the current knowledge regarding the formation and function of the neutrophil phagosome, examine new insights into the phagosomal environment that have been permitted by technological advances in recent years, and discuss aspects of the phagocytic process that are still under debate.


Assuntos
Neutrófilos , Fagossomos , Humanos , Fagossomos/química , Fagossomos/metabolismo , Fagocitose , Fagócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Am J Respir Crit Care Med ; 205(8): 903-916, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35044899

RESUMO

Rationale: Patients with chronic obstructive pulmonary disease (COPD) experience excess cardiovascular morbidity and mortality, and exacerbations further increase the risk of such events. COPD is associated with persistent blood and airway neutrophilia and systemic and tissue hypoxia. Hypoxia augments neutrophil elastase release, enhancing capacity for tissue injury. Objective: To determine whether hypoxia-driven neutrophil protein secretion contributes to endothelial damage in COPD. Methods: The healthy human neutrophil secretome generated under normoxic or hypoxic conditions was characterized by quantitative mass spectrometry, and the capacity for neutrophil-mediated endothelial damage was assessed. Histotoxic protein concentrations were measured in normoxic versus hypoxic neutrophil supernatants and plasma from patients experiencing COPD exacerbation and healthy control subjects. Measurements and Main Results: Hypoxia promoted PI3Kγ-dependent neutrophil elastase secretion, with greater release seen in neutrophils from patients with COPD. Supernatants from neutrophils incubated under hypoxia caused pulmonary endothelial cell damage, and identical supernatants from COPD neutrophils increased neutrophil adherence to endothelial cells. Proteomics revealed differential neutrophil protein secretion under hypoxia and normoxia, and hypoxia augmented secretion of a subset of histotoxic granule and cytosolic proteins, with significantly greater release seen in COPD neutrophils. The plasma of patients with COPD had higher content of hypoxia-upregulated neutrophil-derived proteins and protease activity, and vascular injury markers. Conclusions: Hypoxia drives a destructive "hypersecretory" neutrophil phenotype conferring enhanced capacity for endothelial injury, with a corresponding signature of neutrophil degranulation and vascular injury identified in plasma of patients with COPD. Thus, hypoxic enhancement of neutrophil degranulation may contribute to increased cardiovascular risk in COPD. These insights may identify new therapeutic opportunities for endothelial damage in COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Lesões do Sistema Vascular , Células Endoteliais/metabolismo , Humanos , Hipóxia/metabolismo , Elastase de Leucócito/metabolismo , Neutrófilos/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Lesões do Sistema Vascular/metabolismo
6.
Am J Respir Crit Care Med ; 203(11): 1419-1430, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33320799

RESUMO

Rationale: Pulmonary endothelial permeability contributes to the high-permeability pulmonary edema that characterizes acute respiratory distress syndrome. Circulating BMP9 (bone morphogenetic protein 9) is emerging as an important regulator of pulmonary vascular homeostasis. Objectives:To determine whether endogenous BMP9 plays a role in preserving pulmonary endothelial integrity and whether loss of endogenous BMP9 occurs during LPS challenge. Methods: A BMP9-neutralizing antibody was administrated to healthy adult mice, and lung vasculature was examined. Potential mechanisms were delineated by transcript analysis in human lung endothelial cells. The impact of BMP9 administration was evaluated in a murine acute lung injury model induced by inhaled LPS. Levels of BMP9 were measured in plasma from patients with sepsis and from endotoxemic mice. Measurements and Main Results: Subacute neutralization of endogenous BMP9 in mice (N = 12) resulted in increased lung vascular permeability (P = 0.022), interstitial edema (P = 0.0047), and neutrophil extravasation (P = 0.029) compared with IgG control treatment (N = 6). In pulmonary endothelial cells, BMP9 regulated transcriptome pathways implicated in vascular permeability and cell-membrane integrity. Augmentation of BMP9 signaling in mice (N = 8) prevented inhaled LPS-induced lung injury (P = 0.0027) and edema (P < 0.0001). In endotoxemic mice (N = 12), endogenous circulating BMP9 concentrations were markedly reduced, the causes of which include a transient reduction in hepatic BMP9 mRNA expression and increased elastase activity in plasma. In human patients with sepsis (N = 10), circulating concentratons of BMP9 were also markedly reduced (P < 0.0001). Conclusions: Endogenous circulating BMP9 is a pulmonary endothelial-protective factor, downregulated during inflammation. Exogenous BMP9 offers a potential therapy to prevent increased pulmonary endothelial permeability in lung injury.


Assuntos
Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/patologia , Endotélio/patologia , Endotoxemia/sangue , Fator 2 de Diferenciação de Crescimento/sangue , Sepse/sangue , Lesão Pulmonar Aguda/etiologia , Animais , Estudos de Casos e Controles , Células Endoteliais/metabolismo , Endotoxemia/etiologia , Endotoxemia/patologia , Feminino , Humanos , Masculino , Camundongos , Edema Pulmonar/sangue , Edema Pulmonar/etiologia , Edema Pulmonar/patologia , Sepse/etiologia , Sepse/patologia
7.
Int J Mol Sci ; 21(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053993

RESUMO

Neutrophils are key effector cells of innate immunity, rapidly recruited to defend the host against invading pathogens. Neutrophils may kill pathogens intracellularly, following phagocytosis, or extracellularly, by degranulation and the release of neutrophil extracellular traps; all of these microbicidal strategies require the deployment of cytotoxic proteins and proteases, packaged during neutrophil development within cytoplasmic granules. Neutrophils operate in infected and inflamed tissues, which can be profoundly hypoxic. Neutrophilic infiltration of hypoxic tissues characterises a myriad of acute and chronic infectious and inflammatory diseases, and as well as potentially protecting the host from pathogens, neutrophil granule products have been implicated in causing collateral tissue damage in these scenarios. This review discusses the evidence for the enhanced secretion of destructive neutrophil granule contents observed in hypoxic environments and the potential mechanisms for this heightened granule exocytosis, highlighting implications for the host. Understanding the dichotomy of the beneficial and detrimental consequences of neutrophil degranulation in hypoxic environments is crucial to inform potential neutrophil-directed therapeutics in order to limit persistent, excessive, or inappropriate inflammation.


Assuntos
Degranulação Celular , Neutrófilos/citologia , Neutrófilos/imunologia , Animais , Hipóxia Celular , Armadilhas Extracelulares/imunologia , Humanos , Hipóxia/imunologia , Imunidade Inata , Infecções/imunologia , Inflamação/imunologia , Ativação de Neutrófilo , Neutrófilos/fisiologia , Vesículas Secretórias/imunologia
9.
Microbes Infect ; 19(3): 166-176, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27789256

RESUMO

Staphylococcal infection and neutrophilic inflammation can act in concert to establish a profoundly hypoxic environment. In this review we summarise how neutrophils and Staphylococcus aureus are adapted to function under hypoxic conditions, with a particular focus on the impaired ability of hypoxic neutrophils to effect Staphylococcus aureus killing.


Assuntos
Hipóxia/patologia , Imunidade Inata , Neutrófilos/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade , Animais , Modelos Animais de Doenças , Humanos
10.
Thorax ; 71(11): 1030-1038, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27581620

RESUMO

BACKGROUND: The inflamed bronchial mucosal surface is a profoundly hypoxic environment. Neutrophilic airway inflammation and neutrophil-derived proteases have been linked to disease progression in conditions such as COPD and cystic fibrosis, but the effects of hypoxia on potentially harmful neutrophil functional responses such as degranulation are unknown. METHODS AND RESULTS: Following exposure to hypoxia (0.8% oxygen, 3 kPa for 4 h), neutrophils stimulated with inflammatory agonists (granulocyte-macrophage colony stimulating factor or platelet-activating factor and formylated peptide) displayed a markedly augmented (twofold to sixfold) release of azurophilic (neutrophil elastase, myeloperoxidase), specific (lactoferrin) and gelatinase (matrix metalloproteinase-9) granule contents. Neutrophil supernatants derived under hypoxic but not normoxic conditions induced extensive airway epithelial cell detachment and death, which was prevented by coincubation with the antiprotease α-1 antitrypsin; both normoxic and hypoxic supernatants impaired ciliary function. Surprisingly, the hypoxic upregulation of neutrophil degranulation was not dependent on hypoxia-inducible factor (HIF), nor was it fully reversed by inhibition of phospholipase C signalling. Hypoxia augmented the resting and cytokine-stimulated phosphorylation of AKT, and inhibition of phosphoinositide 3-kinase (PI3K)γ (but not other PI3K isoforms) prevented the hypoxic upregulation of neutrophil elastase release. CONCLUSION: Hypoxia augments neutrophil degranulation and confers enhanced potential for damage to respiratory airway epithelial cells in a HIF-independent but PI3Kγ-dependent fashion.


Assuntos
Degranulação Celular/efeitos dos fármacos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Apoptose , Western Blotting , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Imuno-Histoquímica , Lactoferrina/metabolismo , Elastase de Leucócito/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Microscopia Eletrônica , Peroxidase/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA