Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562781

RESUMO

Human induced pluripotent stem cell (iPSC) derived alveolar organoids have emerged as a system to model the alveolar epithelium in homeostasis and disease. However, alveolar organoids are typically grown in Matrigel, a mouse-sarcoma derived basement membrane matrix that offers poor control over matrix properties, prompting the development of synthetic hydrogels as a Matrigel alternative. Here, we develop a two-step culture method that involves pre-aggregation of organoids in hydrogel-based microwells followed by embedding in a synthetic hydrogel that supports alveolar organoid growth, while also offering considerable control over organoid and hydrogel properties. We find that the aggregated organoids secrete their own nascent extracellular matrix (ECM) both in the microwells and upon embedding in the synthetic hydrogels. Thus, the synthetic gels described here allow us to de-couple exogenous and nascent ECM in order to interrogate the role of ECM in organoid formation.

2.
Adv Biol (Weinh) ; : e2400091, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616175

RESUMO

Adult stem cells occupy a niche that contributes to their function, but how stem cells rebuild their microenvironment after injury remains an open-ended question. Herein, biomaterial-based systems and metabolic labeling are utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts are observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, muscle stem cells increased nascent matrix deposition with activation kinetics. Reducing the ability to deposit nascent matrix by an inhibitor of vesicle trafficking (Exo-1) attenuated muscle stem cell function and mimicked impairments observed from muscle stem cells isolated from old muscles. Old muscle stem cells are observed to deposit less nascent matrix than young muscle stem cells, which is rescued with therapeutic supplementation of insulin-like growth factors. These results highlight the role of nascent matrix production with muscle stem cell activation.

3.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328131

RESUMO

Adult stem cells occupy a niche that contributes to their function, but how stem cells remodel their microenvironment remains an open-ended question. Herein, biomaterials-based systems and metabolic labeling were utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts were observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, the increased nascent matrix deposition was associated with stem cell activation. Reducing the ability to deposit nascent matrix in muscle stem cells attenuated function and mimicked impairments observed from muscle stem cells isolated from old aged muscles, which could be rescued with therapeutic supplementation of insulin-like growth factors. These results highlight how nascent matrix production is critical for maintaining healthy stem cell function.

4.
Tissue Eng Part A ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38117140

RESUMO

Volumetric muscle loss (VML) is the loss of skeletal muscle that exceeds the muscle's self-repair mechanism and leads to permanent functional deficits. In a previous study, we demonstrated the ability of our scaffold-free, multiphasic, tissue-engineered skeletal muscle units (SMUs) to restore muscle mass and force production. However, it was observed that the full recovery of muscle structure was inhibited due to increased fibrosis in the repair site. As such, novel biomaterials such as hydrogels (HGs) may have significant potential for decreasing the acute inflammation and subsequent fibrosis, as well as enhancing skeletal muscle regeneration following VML injury and repair. The goal of the current study was to assess the biocompatibility of commercially available poly(ethylene glycol), methacrylated gelatin, and hyaluronic acid (HA) HGs in combination with our SMUs to treat VML in a clinically relevant large animal model. An acute 30% VML injury created in the sheep peroneus tertius (PT) muscle was repaired with or without HGs and assessed for acute inflammation (incision swelling) and white blood cell counts in blood for 7 days. At the 7-day time point, HA was selected as the HG to use for the combined HG/SMU repair, as it exhibited a reduced inflammation response compared to the other HGs. Six weeks after implantation, all groups were assessed for gross and histological structural recovery. The results showed that the groups repaired with an SMU (SMU-Only and SMU+HA) restored muscle mass to greater degree than the groups with only HG and that the SMU groups had PT muscle masses that were statistically indistinguishable from its uninjured contralateral PT muscle. Furthermore, the HA HG, SMU-Only, and SMU+HA groups displayed notable efficacy in diminishing pro-inflammatory markers and showed an increased number of regenerating muscle fibers in the repair site. Taken together, the data demonstrates the efficacy of HA HG in decreasing acute inflammation and fibrotic response. The combination of HA and our SMUs also holds promise to decrease acute inflammation and fibrosis and increase muscle regeneration, advancing this combination therapy toward clinically relevant interventions for VML injuries in humans.

5.
iScience ; 26(12): 108472, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077130

RESUMO

Mechanical forces provide critical biological signals to cells during healthy and aberrant organ development as well as during disease processes in adults. Within the cardiopulmonary system, mechanical forces, such as shear, compressive, and tensile forces, act across various length scales, and dysregulated forces are often a leading cause of disease initiation and progression such as in bronchopulmonary dysplasia and cardiomyopathies. Engineered in vitro models have supported studies of mechanical forces in a number of tissue and disease-specific contexts, thus enabling new mechanistic insights into cardiopulmonary development and disease. This review first provides fundamental examples where mechanical forces operate at multiple length scales to ensure precise lung and heart function. Next, we survey recent engineering platforms and tools that have provided new means to probe and modulate mechanical forces across in vitro and in vivo settings. Finally, the potential for interdisciplinary collaborations to inform novel therapeutic approaches for a number of cardiopulmonary diseases are discussed.

6.
Cell ; 186(23): 4992-4993, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37913767

RESUMO

The importance of dynamic mechanical control over the cellular microenvironment has long been appreciated. In a recent issue of Device, Raman and colleagues design a clever yet generalizable tool to achieve this, illustrating magnetic stimulation of an engineered extracellular matrix to induce muscle fiber alignment toward programmed functioning.


Assuntos
Robótica , Engenharia Tecidual , Matriz Extracelular , Fenômenos Magnéticos
7.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788109

RESUMO

Increased extracellular matrix (ECM) stiffness has been implicated in esophageal adenocarcinoma (EAC) progression, metastasis, and resistance to therapy. However, the underlying protumorigenic pathways are yet to be defined. Additional work is needed to develop physiologically relevant in vitro 3D culture models that better recapitulate the human tumor microenvironment and can be used to dissect the contributions of matrix stiffness to EAC pathogenesis. Here, we describe a modular, tumor ECM-mimetic hydrogel platform with tunable mechanical properties, defined presentation of cell-adhesive ligands, and protease-dependent degradation that supports robust in vitro growth and expansion of patient-derived EAC 3D organoids (EAC PDOs). Hydrogel mechanical properties control EAC PDO formation, growth, proliferation, and activation of tumor-associated pathways that elicit stem-like properties in the cancer cells, as highlighted through in vitro and in vivo environments. We also demonstrate that the engineered hydrogel serves as a platform for identifying potential therapeutic targets to disrupt the contribution of protumorigenic matrix mechanics in EAC. Together, these studies show that an engineered PDO culture platform can be used to elucidate underlying matrix-mediated mechanisms of EAC and inform the development of therapeutics that target ECM stiffness in EAC.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Hidrogéis , Matriz Extracelular/metabolismo , Adenocarcinoma/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Microambiente Tumoral
8.
J Orthop Translat ; 41: 42-53, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37691639

RESUMO

Background: The use of acellular hydrogels to repair osteochondral defects requires cells to first invade the biomaterial and then to deposit extracellular matrix for tissue regeneration. Due to the diverse physicochemical properties of engineered hydrogels, the specific properties that allow or even improve the behaviour of cells are not yet clear. The aim of this study was to investigate the influence of various physicochemical properties of hydrogels on cell migration and related tissue formation using in vitro, ex vivo and in vivo models. Methods: Three hydrogel platforms were used in the study: Gelatine methacryloyl (GelMA) (5% wt), norbornene hyaluronic acid (norHA) (2% wt) and tyramine functionalised hyaluronic acid (THA) (2.5% wt). GelMA was modified to vary the degree of functionalisation (DoF 50% and 80%), norHA was used with varied degradability via a matrix metalloproteinase (MMP) degradable crosslinker and THA was used with the addition of collagen fibrils. The migration of human mesenchymal stromal cells (hMSC) in hydrogels was studied in vitro using a 3D spheroid migration assay over 48h. In addition, chondrocyte migration within and around hydrogels was investigated in an ex vivo bovine cartilage ring model (three weeks). Finally, tissue repair within osteochondral defects was studied in a semi-orthotopic in vivo mouse model (six weeks). Results: A lower DoF of GelMA did not affect cell migration in vitro (p â€‹= â€‹0.390) and led to a higher migration score ex vivo (p â€‹< â€‹0.001). The introduction of a MMP degradable crosslinker in norHA hydrogels did not improve cell infiltration in vitro or in vivo. The addition of collagen to THA resulted in greater hMSC migration in vitro (p â€‹= â€‹0.031) and ex vivo (p â€‹< â€‹0.001). Hydrogels that exhibited more cell migration in vitro or ex vivo also showed more tissue formation in the osteochondral defects in vivo, except for the norHA group. Whereas norHA with a degradable crosslinker did not improve cell migration in vitro or ex vivo, it did significantly increase tissue formation in vivo compared to the non-degradable crosslinker (p â€‹< â€‹0.001). Conclusion: The modification of hydrogels by adapting DoF, use of a degradable crosslinker or including fibrillar collagen can control and improve cell migration and tissue formation for osteochondral defect repair. This study also emphasizes the importance of performing both in vitro and in vivo testing of biomaterials, as, depending on the material, the results might be affected by the model used.The translational potential of this article: This article highlights the potential of using acellular hydrogels to repair osteochondral defects, which are common injuries in orthopaedics. The study provides a deeper understanding of how to modify the properties of hydrogels to control cell migration and tissue formation for osteochondral defect repair. The results of this article also highlight that the choice of the used laboratory model can affect the outcome. Testing hydrogels in different models is thus advised for successful translation of laboratory results to the clinical application.

9.
Proc Natl Acad Sci U S A ; 120(25): e2215711120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37310997

RESUMO

Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid-polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.


Assuntos
Mieloma Múltiplo , Estados Unidos , Humanos , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Medula Óssea , RNA Interferente Pequeno/genética , Células Endoteliais , Ciclofilina A , Lipídeos , Microambiente Tumoral
10.
Res Sq ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090621

RESUMO

Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and in silico experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in noninvasive and invasive breast cancer cell lines. In human TNBC biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in noninvasive compared to invasive regions. Similarly, in silico analyses of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective modality to limit recurrence in breast cancer patients.

11.
J Biomed Mater Res A ; 111(9): 1441-1458, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37066837

RESUMO

Human mesenchymal stromal cells (hMSCs) are of significant interest as a renewable source of therapeutically useful cells. In tissue engineering, hMSCs are implanted within a scaffold to provide enhanced capacity for tissue repair. The present study evaluates how mechanical properties of that scaffold can alter the phenotype and genotype of the cells, with the aim of augmenting hMSC differentiation along the myogenic, neurogenic or chondrogenic linages. The hMSCs were grown three-dimensionally (3D) in a hydrogel comprised of poly(ethylene glycol) (PEG)-conjugated to fibrinogen. The hydrogel's shear storage modulus (G'), which was controlled by increasing the amount of PEG-diacrylate cross-linker in the matrix, was varied in the range of 100-2000 Pascal (Pa). The differentiation into each lineage was initiated by a defined culture medium, and the hMSCs grown in the different modulus hydrogels were characterized using gene and protein expression. Materials having lower storage moduli (G' = 100 Pa) exhibited more hMSCs differentiating to neurogenic lineages. Myogenesis was favored in materials having intermediate modulus values (G' = 500 Pa), whereas chondrogenesis was favored in materials with a higher modulus (G' = 1000 Pa). Enhancing the differentiation pathway of hMSCs in 3D hydrogel scaffolds using simple modifications to mechanical properties represents an important achievement toward the effective application of these cells in tissue engineering.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Condrogênese/genética , Diferenciação Celular , Polietilenoglicóis , Engenharia Tecidual/métodos
12.
Cell ; 186(7): 1478-1492.e15, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870331

RESUMO

Lungs undergo mechanical strain during breathing, but how these biophysical forces affect cell fate and tissue homeostasis are unclear. We show that biophysical forces through normal respiratory motion actively maintain alveolar type 1 (AT1) cell identity and restrict these cells from reprogramming into AT2 cells in the adult lung. AT1 cell fate is maintained at homeostasis by Cdc42- and Ptk2-mediated actin remodeling and cytoskeletal strain, and inactivation of these pathways causes a rapid reprogramming into the AT2 cell fate. This plasticity induces chromatin reorganization and changes in nuclear lamina-chromatin interactions, which can discriminate AT1 and AT2 cell identity. Unloading the biophysical forces of breathing movements leads to AT1-AT2 cell reprogramming, revealing that normal respiration is essential to maintain alveolar epithelial cell fate. These data demonstrate the integral function of mechanotransduction in maintaining lung cell fate and identifies the AT1 cell as an important mechanosensor in the alveolar niche.


Assuntos
Células Epiteliais Alveolares , Mecanotransdução Celular , Células Epiteliais Alveolares/metabolismo , Células Cultivadas , Pulmão , Diferenciação Celular/fisiologia , Respiração
13.
Adv Mater ; : e2300017, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961361

RESUMO

Folding of mucosal tissues, such as the tissue within the epithelium of the upper respiratory airways, is critical for organ function. Studying the influence of folded tissue patterns on cellular function is challenging mainly due to the lack of suitable cell culture platforms that can recreate dynamic tissue folding in vitro. Here, a bilayer hydrogel folding system, composed of alginate/polyacrylamide double-network (DN) and hyaluronic acid (HA) hydrogels, to generate static folding patterns based on mechanical instabilities, is described. By encapsulating human fibroblasts into patterned HA hydrogels, human bronchial epithelial cells form a folded pseudostratified monolayer. Using magnetic microparticles, DN hydrogels reversibly fold into pre-defined patterns and enable programmable on-demand folding of cell-laden hydrogel systems upon applying a magnetic field. This hydrogel construction provides a dynamic culture system for mimicking tissue folding in vitro, which is extendable to other cell types and organ systems.

14.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36821371

RESUMO

Epithelial organoids derived from intestinal tissue, called enteroids, recapitulate many aspects of the organ in vitro and can be used for biological discovery, personalized medicine, and drug development. Here, we interrogated the cell signaling environment within the developing human intestine to identify niche cues that may be important for epithelial development and homeostasis. We identified an EGF family member, EPIREGULIN (EREG), which is robustly expressed in the developing human crypt. Enteroids generated from the developing human intestine grown in standard culture conditions, which contain EGF, are dominated by stem and progenitor cells and feature little differentiation and no spatial organization. Our results demonstrate that EREG can replace EGF in vitro, and EREG leads to spatially resolved enteroids that feature budded and proliferative crypt domains and a differentiated villus-like central lumen. Multiomic (transcriptome plus epigenome) profiling of native crypts, EGF-grown enteroids, and EREG-grown enteroids showed that EGF enteroids have an altered chromatin landscape that is dependent on EGF concentration, downregulate the master intestinal transcription factor CDX2, and ectopically express stomach genes, a phenomenon that is reversible. This is in contrast to EREG-grown enteroids, which remain intestine like in culture. Thus, EREG creates a homeostatic intestinal niche in vitro, enabling interrogation of stem cell function, cellular differentiation, and disease modeling.


Assuntos
Fator de Crescimento Epidérmico , Intestinos , Humanos , Epirregulina , Mucosa Intestinal , Diferenciação Celular
15.
Nat Biomed Eng ; 7(2): 177-191, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35996026

RESUMO

Changes in the micro-environment of fibrous connective tissue can lead to alterations in the phenotypes of tissue-resident cells, yet the underlying mechanisms are poorly understood. Here, by visualizing the dynamics of histone spatial reorganization in tenocytes and mesenchymal stromal cells from fibrous tissue of human donors via super-resolution microscopy, we show that physiological and pathological chemomechanical cues can directly regulate the spatial nanoscale organization and density of chromatin in these tissue-resident cell populations. Specifically, changes in substrate stiffness, altered oxygen tension and the presence of inflammatory signals drive chromatin relocalization and compaction into the nuclear boundary, mediated by the activity of the histone methyltransferase EZH2 and an intact cytoskeleton. In healthy cells, chemomechanically triggered changes in the spatial organization and density of chromatin are reversible and can be attenuated by dynamically stiffening the substrate. In diseased human cells, however, the link between mechanical or chemical inputs and chromatin remodelling is abrogated. Our findings suggest that aberrant chromatin organization in fibrous connective tissue may be a hallmark of disease progression that could be leveraged for therapeutic intervention.


Assuntos
Cromatina , Sinais (Psicologia) , Humanos , Histonas/genética , Citoesqueleto , Tecido Conjuntivo
16.
Adv Mater ; 34(28): e2202992, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35522531

RESUMO

Epithelial cell organoids have increased opportunities to probe questions on tissue development and disease in vitro and for therapeutic cell transplantation. Despite their potential, current protocols to grow these organoids almost exclusively depend on culture within 3D Matrigel, which limits defined culture conditions, introduces animal components, and results in heterogenous organoids (i.e., shape, size, composition). Here, a method is described that relies on hyaluronic acid hydrogels for the generation and expansion of lung alveolar organoids (alveolospheres). Using synthetic hydrogels with defined chemical and physical properties, human-induced pluripotent stem cell (iPSC)-derived alveolar type 2 cells (iAT2s) self-assemble into alveolospheres and propagate in Matrigel-free conditions. By engineering predefined microcavities within these hydrogels, the heterogeneity of alveolosphere size and structure is reduced when compared to 3D culture, while maintaining the alveolar type 2 cell fate of human iAT2-derived progenitor cells. This hydrogel system is a facile and accessible system for the culture of iPSC-derived lung progenitors and the method can be expanded to the culture of primary mouse tissue derived AT2 and other epithelial progenitor and stem cell aggregates.


Assuntos
Hidrogéis , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Ácido Hialurônico/metabolismo , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão , Camundongos , Organoides/metabolismo
17.
Nat Protoc ; 17(3): 618-648, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35140408

RESUMO

Re-creating features of the native extracellular matrix (ECM) with engineered biomaterials has become a valuable tool to probe the influence of ECM properties on cellular functions (e.g., differentiation) and toward the engineering of tissues. However, characterization of newly secreted (nascent) matrix and turnover, which are important in the context of cells interacting with these biomaterials, has been limited by a lack of tools. We developed a protocol to visualize and quantify the spatiotemporal evolution of newly synthesized and deposited matrix by cells that are either cultured atop (2D) or embedded within (3D) biomaterial systems (e.g., hydrogels, fibrous matrices). This technique relies on the incorporation of a noncanonical amino acid (azidohomoalanine) into proteins as they are synthesized. Deposited nascent ECM components are then visualized with fluorescent cyclooctynes via copper-free cycloaddition for spatiotemporal analysis or modified with cleavable biotin probes for identification. Here we describe the preparation of hyaluronic acid hydrogels through ultraviolet or visible light induced cross-linking for 2D and 3D cell culture, as well as the fluorescent labeling of nascent ECM deposited by cells during culture. We also provide protocols for secondary immunofluorescence of specific ECM components and ImageJ-based ECM quantification methods. Hyaluronic acid polymer synthesis takes 2 weeks to complete, and hydrogel formation for 2D or 3D cell culture is performed in 2-3 h. Lastly, we detail the identification of nascent proteins, including enrichment, preparation and analysis with mass spectrometry, which can be completed in 10 d.


Assuntos
Matriz Extracelular , Engenharia Tecidual , Materiais Biocompatíveis/análise , Biofísica , Matriz Extracelular/metabolismo , Hidrogéis/química , Engenharia Tecidual/métodos
18.
Nat Commun ; 12(1): 3514, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112772

RESUMO

3D culture of cells in designer biomaterial matrices provides a biomimetic cellular microenvironment and can yield critical insights into cellular behaviours not available from conventional 2D cultures. Hydrogels with dynamic properties, achieved by incorporating either degradable structural components or reversible dynamic crosslinks, enable efficient cell adaptation of the matrix and support associated cellular functions. Herein we demonstrate that given similar equilibrium binding constants, hydrogels containing dynamic crosslinks with a large dissociation rate constant enable cell force-induced network reorganization, which results in rapid stellate spreading, assembly, mechanosensing, and differentiation of encapsulated stem cells when compared to similar hydrogels containing dynamic crosslinks with a low dissociation rate constant. Furthermore, the static and precise conjugation of cell adhesive ligands to the hydrogel subnetwork connected by such fast-dissociating crosslinks is also required for ultra-rapid stellate spreading (within 18 h post-encapsulation) and enhanced mechanosensing of stem cells in 3D. This work reveals the correlation between microscopic cell behaviours and the molecular level binding kinetics in hydrogel networks. Our findings provide valuable guidance to the design and evaluation of supramolecular biomaterials with cell-adaptable properties for studying cells in 3D cultures.


Assuntos
Biomimética/métodos , Adesão Celular , Técnicas de Cultura de Células/métodos , Microambiente Celular , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Organoides/metabolismo , Osteogênese , Adamantano/química , Materiais Biocompatíveis/química , Ácido Cólico , Simulação por Computador , Reagentes de Ligações Cruzadas/química , Ciclodextrinas/química , Matriz Extracelular , Humanos , Cinética , Ligantes , Mecanotransdução Celular , Células-Tronco Mesenquimais/citologia , Simulação de Dinâmica Molecular , Organoides/citologia , Termodinâmica
19.
Adv Healthc Mater ; 10(10): e2100315, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33738988

RESUMO

Cartilage injuries and subsequent tissue deterioration impact millions of patients. Since the regeneration of functional hyaline cartilage remains elusive, methods to stabilize the remaining tissue, and prevent further deterioration, would be of significant clinical utility and prolong joint function. Finite element modeling shows that fortification of the degenerate cartilage (Reinforcement) and reestablishment of a superficial zone (Sealing) are both required to restore fluid pressurization within the tissue and restrict fluid flow and matrix loss from the defect surface. Here, a hyaluronic acid (HA) hydrogel system is designed to both interdigitate with and promote the sealing of the degenerated cartilage. Interdigitating fortification restores both bulk and local pericellular tissue mechanics, reestablishing the homeostatic mechanotransduction of endogenous chondrocytes within the tissue. This HA therapy is further functionalized to present chemo mechanical cues that improve the attachment and direct the response of mesenchymal stem/stromal cells at the defect site, guiding localized extracellular matrix deposition to "seal" the defect. Together, these results support the therapeutic potential, across cell and tissue length scales, of an innovative hydrogel therapy for the treatment of damaged cartilage.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Condrócitos , Condrogênese , Humanos , Hidrogéis , Mecanotransdução Celular , Engenharia Tecidual
20.
Science ; 371(6534)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33707239

RESUMO

The lung alveolus is the functional unit of the respiratory system required for gas exchange. During the transition to air breathing at birth, biophysical forces are thought to shape the emerging tissue niche. However, the intercellular signaling that drives these processes remains poorly understood. Applying a multimodal approach, we identified alveolar type 1 (AT1) epithelial cells as a distinct signaling hub. Lineage tracing demonstrates that AT1 progenitors align with receptive, force-exerting myofibroblasts in a spatial and temporal manner. Through single-cell chromatin accessibility and pathway expression (SCAPE) analysis, we demonstrate that AT1-restricted ligands are required for myofibroblasts and alveolar formation. These studies show that the alignment of cell fates, mediated by biophysical and AT1-derived paracrine signals, drives the extensive tissue remodeling required for postnatal respiration.


Assuntos
Linhagem da Célula/genética , Epigênese Genética , Alvéolos Pulmonares/embriologia , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Animais , Células Cultivadas , Sinais (Psicologia) , Epigenômica , Humanos , Camundongos , Camundongos Transgênicos , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , RNA-Seq/métodos , Transdução de Sinais , Análise de Célula Única , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA