Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Ophthalmol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508674

RESUMO

BACKGROUND: Birdshot chorioretinitis (BSCR) is a chronic bilateral posterior uveitis, which can affect central as well as peripheral vision. The aim of this study was to assess how visual acuity and visual field evolved over time in patients with BSCR. METHODS: This was a prospective, observational, single-centre study based on data from the CO-BIRD cohort. Patient visits were categorised based on the time elapsed since the first symptoms, and groups of patients with different disease duration were defined. The main outcome measures were the best corrected visual acuity (BCVA), the mean deviation (MD) and the standard pattern deviation (PSD). RESULTS: The study included 447 Caucasian patients (181 males and 266 females), all of whom HLA-A29 carriers. From onset to 30 years of disease duration, the number of patients in each consecutive 5-year period was 237, 250, 196, 147, 78 and 32, respectively. Overall, the range of visual acuity and visual field results increased with disease duration. BCVA gradually decreased and showed a significant decline after 11-15 years after the first symptoms. Among the visual field indices, PSD significantly increased after 16-20 years, while MD showed a significant decline after 21-25 years. No major gender differences were found in visual outcomes, indicating comparable severity. The intereye correlations of MD and PSD were stronger than those of BCVA. CONCLUSIONS: BSCR resulted in a large heterogeneity of visual outcomes, which increased with time. Our data provide an overview of the visual consequences of BSCR as a function of disease duration.

2.
Nat Immunol ; 20(10): 1311-1321, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31527833

RESUMO

Whether screening the metabolic activity of immune cells facilitates discovery of molecular pathology remains unknown. Here we prospectively screened the extracellular acidification rate as a measure of glycolysis and the oxygen consumption rate as a measure of mitochondrial respiration in B cells from patients with primary antibody deficiency. The highest oxygen consumption rate values were detected in three study participants with persistent polyclonal B cell lymphocytosis (PPBL). Exome sequencing identified germline mutations in SDHA, which encodes succinate dehydrogenase subunit A, in all three patients with PPBL. SDHA gain-of-function led to an accumulation of fumarate in PPBL B cells, which engaged the KEAP1-Nrf2 system to drive the transcription of genes encoding inflammatory cytokines. In a single patient trial, blocking the activity of the cytokine interleukin-6 in vivo prevented systemic inflammation and ameliorated clinical disease. Overall, our study has identified pathological mitochondrial retrograde signaling as a disease modifier in primary antibody deficiency.


Assuntos
Linfócitos B/imunologia , Complexo II de Transporte de Elétrons/genética , Inflamação/metabolismo , Linfocitose/imunologia , Mitocôndrias/metabolismo , Mutação/genética , Anti-Inflamatórios/farmacologia , Respiração Celular , Células Cultivadas , Fumaratos/metabolismo , Glicólise , Humanos , Inflamação/genética , Interleucina-6/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Consumo de Oxigênio , Estudos Prospectivos , Transdução de Sinais , Sequenciamento do Exoma
3.
Sci Signal ; 12(599)2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530731

RESUMO

Transforming growth factor-ß (TGF-ß) is produced by tumors, and increased amounts of this cytokine in the tumor microenvironment and serum are associated with poor patient survival. TGF-ß-mediated suppression of antitumor T cell responses contributes to tumor growth and survival. However, TGF-ß also has tumor-suppressive activity; thus, dissecting cell type-specific molecular effects may inform therapeutic strategies targeting this cytokine. Here, using human peripheral and tumor-associated lymphocytes, we investigated how tumor-derived TGF-ß suppresses a key antitumor function of CD4+ T cells, interferon-γ (IFN-γ) production. Suppression required the expression and phosphorylation of Smad proteins in the TGF-ß signaling pathway, but not their nuclear translocation, and depended on oxygen availability, suggesting a metabolic basis for these effects. Smad proteins were detected in the mitochondria of CD4+ T cells, where they were phosphorylated upon treatment with TGF-ß. Phosphorylated Smad proteins were also detected in the mitochondria of isolated tumor-associated lymphocytes. TGF-ß substantially impaired the ATP-coupled respiration of CD4+ T cells and specifically inhibited mitochondrial complex V (ATP synthase) activity. Last, inhibition of ATP synthase alone was sufficient to impair IFN-γ production by CD4+ T cells. These results, which have implications for human antitumor immunity, suggest that TGF-ß targets T cell metabolism directly, thus diminishing T cell function through metabolic paralysis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interferon gama/imunologia , Mitocôndrias/imunologia , Neoplasias/imunologia , Consumo de Oxigênio/imunologia , Fator de Crescimento Transformador beta/imunologia , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Humanos , Interferon gama/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/imunologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/imunologia , Transdução de Sinais/imunologia , Proteínas Smad/imunologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/sangue , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral/imunologia
4.
J Immunol ; 196(1): 106-14, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26621861

RESUMO

Effector memory (EM) CD4(+) T cells recirculate between normoxic blood and hypoxic tissues to screen for cognate Ag. How mitochondria of these cells, shuttling between normoxia and hypoxia, maintain bioenergetic efficiency and stably uphold antiapoptotic features is unknown. In this study, we found that human EM CD4(+) T cells had greater spare respiratory capacity (SRC) than did naive counterparts, which was immediately accessed under hypoxia. Consequently, hypoxic EM cells maintained ATP levels, survived and migrated better than did hypoxic naive cells, and hypoxia did not impair their capacity to produce IFN-γ. EM CD4(+) T cells also had more abundant cytosolic GAPDH and increased glycolytic reserve. In contrast to SRC, glycolytic reserve was not tapped under hypoxic conditions, and, under hypoxia, glucose metabolism contributed similarly to ATP production in naive and EM cells. However, both under normoxic and hypoxic conditions, glucose was critical for EM CD4(+) T cell survival. Mechanistically, in the absence of glycolysis, mitochondrial membrane potential (ΔΨm) of EM cells declined and intrinsic apoptosis was triggered. Restoring pyruvate levels, the end product of glycolysis, preserved ΔΨm and prevented apoptosis. Furthermore, reconstitution of reactive oxygen species (ROS), whose production depends on ΔΨm, also rescued viability, whereas scavenging mitochondrial ROS exacerbated apoptosis. Rapid access of SRC in hypoxia, linked with built-in, oxygen-resistant glycolytic reserve that functionally insulates ΔΨm and mitochondrial ROS production from oxygen tension changes, provides an immune-metabolic basis supporting survival, migration, and function of EM CD4(+) T cells in normoxic and hypoxic conditions.


Assuntos
Apoptose/imunologia , Linfócitos T CD4-Positivos/metabolismo , Hipóxia Celular/imunologia , Glucose/metabolismo , Mitocôndrias/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Movimento Celular , Sobrevivência Celular/imunologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Glicólise , Humanos , Memória Imunológica/imunologia , Interferon gama/biossíntese , Potencial da Membrana Mitocondrial , Microfluídica , Oxigênio/metabolismo , Ácido Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Immunity ; 42(6): 1033-47, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26084023

RESUMO

Expansion and acquisition of Th1 cell effector function requires metabolic reprogramming; however, the signals instructing these adaptations remain poorly defined. Here we found that in activated human T cells, autocrine stimulation of the complement receptor CD46, and specifically its intracellular domain CYT-1, was required for induction of the amino acid (AA) transporter LAT1 and enhanced expression of the glucose transporter GLUT1. Furthermore, CD46 activation simultaneously drove expression of LAMTOR5, which mediated assembly of the AA-sensing Ragulator-Rag-mTORC1 complex and increased glycolysis and oxidative phosphorylation (OXPHOS), required for cytokine production. T cells from CD46-deficient patients, characterized by defective Th1 cell induction, failed to upregulate the molecular components of this metabolic program as well as glycolysis and OXPHOS, but IFN-γ production could be reinstated by retrovirus-mediated CD46-CYT-1 expression. These data establish a critical link between the complement system and immunometabolic adaptations driving human CD4(+) T cell effector function.


Assuntos
Proteínas do Sistema Complemento/imunologia , Síndrome Hemolítico-Urêmica/imunologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Proteína Cofatora de Membrana/metabolismo , Células Th1/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/imunologia , Células Cultivadas , Reprogramação Celular/imunologia , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Proteínas de Homeodomínio/metabolismo , Humanos , Imunidade Celular/genética , Interferon gama/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína Cofatora de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Neuropeptídeos/metabolismo , Fosforilação Oxidativa , RNA Interferente Pequeno/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA