Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(6): 987-1000, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37156858

RESUMO

In plant cells, translation occurs in three compartments: the cytosol, the plastids and the mitochondria. While the structures of the (prokaryotic-type) ribosomes in plastids and mitochondria are well characterized, high-resolution structures of the eukaryotic 80S ribosomes in the cytosol have been lacking. Here the structure of translating tobacco (Nicotiana tabacum) 80S ribosomes was solved by cryo-electron microscopy with a global resolution of 2.2 Å. The ribosome structure includes two tRNAs, decoded mRNA and the nascent peptide chain, thus providing insights into the molecular underpinnings of the cytosolic translation process in plants. The map displays conserved and plant-specific rRNA modifications and the positions of numerous ionic cofactors, and it uncovers the role of monovalent ions in the decoding centre. The model of the plant 80S ribosome enables broad phylogenetic comparisons that reveal commonalities and differences in the ribosomes of plants and those of other eukaryotes, thus putting our knowledge about eukaryotic translation on a firmer footing.


Assuntos
RNA Ribossômico , Ribossomos , Citosol , RNA Ribossômico/química , Microscopia Crioeletrônica , Filogenia , Modelos Moleculares , Ribossomos/química , Plantas/genética , Nicotiana/genética
2.
Nat Commun ; 13(1): 7641, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496453

RESUMO

Eps15-homology domain containing proteins (EHDs) are eukaryotic, dynamin-related ATPases involved in cellular membrane trafficking. They oligomerize on membranes into filaments that induce membrane tubulation. While EHD crystal structures in open and closed conformations were previously reported, little structural information is available for the membrane-bound oligomeric form. Consequently, mechanistic insights into the membrane remodeling mechanism have remained sparse. Here, by using cryo-electron tomography and subtomogram averaging, we determined structures of nucleotide-bound EHD4 filaments on membrane tubes of various diameters at an average resolution of 7.6 Å. Assembly of EHD4 is mediated via interfaces in the G-domain and the helical domain. The oligomerized EHD4 structure resembles the closed conformation, where the tips of the helical domains protrude into the membrane. The variation in filament geometry and tube radius suggests a spontaneous filament curvature of approximately 1/70 nm-1. Combining the available structural and functional data, we suggest a model for EHD-mediated membrane remodeling.


Assuntos
Dinaminas , Tomografia com Microscopia Eletrônica , Dinaminas/metabolismo , Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo , Microscopia Crioeletrônica
3.
Science ; 376(6599): 1338-1343, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709277

RESUMO

The elongation of eukaryotic selenoproteins relies on a poorly understood process of interpreting in-frame UGA stop codons as selenocysteine (Sec). We used cryo-electron microscopy to visualize Sec UGA recoding in mammals. A complex between the noncoding Sec-insertion sequence (SECIS), SECIS-binding protein 2 (SBP2), and 40S ribosomal subunit enables Sec-specific elongation factor eEFSec to deliver Sec. eEFSec and SBP2 do not interact directly but rather deploy their carboxyl-terminal domains to engage with the opposite ends of the SECIS. By using its Lys-rich and carboxyl-terminal segments, the ribosomal protein eS31 simultaneously interacts with Sec-specific transfer RNA (tRNASec) and SBP2, which further stabilizes the assembly. eEFSec is indiscriminate toward l-serine and facilitates its misincorporation at Sec UGA codons. Our results support a fundamentally distinct mechanism of Sec UGA recoding in eukaryotes from that in bacteria.


Assuntos
Códon de Terminação , Elongação Traducional da Cadeia Peptídica , Proteínas de Ligação a RNA , Ribossomos , Selenocisteína , Selenoproteínas , Códon de Terminação/genética , Microscopia Crioeletrônica , Humanos , Elongação Traducional da Cadeia Peptídica/genética , Conformação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ribossomos/química , Selenocisteína/química , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/biossíntese , Selenoproteínas/genética
4.
Mol Cell ; 81(6): 1200-1215.e9, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33639093

RESUMO

Ribosome biogenesis is a fundamental multi-step cellular process that culminates in the formation of ribosomal subunits, whose production and modification are regulated by numerous biogenesis factors. In this study, we analyze physiologic prokaryotic ribosome biogenesis by isolating bona fide pre-50S subunits from an Escherichia coli strain with the biogenesis factor ObgE, affinity tagged at its native gene locus. Our integrative structural approach reveals a network of interacting biogenesis factors consisting of YjgA, RluD, RsfS, and ObgE on the immature pre-50S subunit. In addition, our study provides mechanistic insight into how the GTPase ObgE, in concert with other biogenesis factors, facilitates the maturation of the 50S functional core and reveals both conserved and divergent evolutionary features of ribosome biogenesis between prokaryotes and eukaryotes.


Assuntos
Proteínas de Escherichia coli , Evolução Molecular , Loci Gênicos , Hidroliases , Proteínas Monoméricas de Ligação ao GTP , Subunidades Ribossômicas Maiores de Bactérias , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroliases/química , Hidroliases/genética , Hidroliases/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/metabolismo
5.
Nature ; 578(7795): 467-471, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31856152

RESUMO

Microtubules are dynamic polymers of α- and ß-tubulin and have crucial roles in cell signalling, cell migration, intracellular transport and chromosome segregation1. They assemble de novo from αß-tubulin dimers in an essential process termed microtubule nucleation. Complexes that contain the protein γ-tubulin serve as structural templates for the microtubule nucleation reaction2. In vertebrates, microtubules are nucleated by the 2.2-megadalton γ-tubulin ring complex (γ-TuRC), which comprises γ-tubulin, five related γ-tubulin complex proteins (GCP2-GCP6) and additional factors3. GCP6 is unique among the GCP proteins because it carries an extended insertion domain of unknown function. Our understanding of microtubule formation in cells and tissues is limited by a lack of high-resolution structural information on the γ-TuRC. Here we present the cryo-electron microscopy structure of γ-TuRC from Xenopus laevis at 4.8 Å global resolution, and identify a 14-spoked arrangement of GCP proteins and γ-tubulins in a partially flexible open left-handed spiral with a uniform sequence of GCP variants. By forming specific interactions with other GCP proteins, the GCP6-specific insertion domain acts as a scaffold for the assembly of the γ-TuRC. Unexpectedly, we identify actin as a bona fide structural component of the γ-TuRC with functional relevance in microtubule nucleation. The spiral geometry of γ-TuRC is suboptimal for microtubule nucleation and a controlled conformational rearrangement of the γ-TuRC is required for its activation. Collectively, our cryo-electron microscopy reconstructions provide detailed insights into the molecular organization, assembly and activation mechanism of vertebrate γ-TuRC, and will serve as a framework for the mechanistic understanding of fundamental biological processes associated with microtubule nucleation, such as meiotic and mitotic spindle formation and centriole biogenesis4.


Assuntos
Microscopia Crioeletrônica , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Xenopus , Actinas/química , Actinas/metabolismo , Actinas/ultraestrutura , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Modelos Moleculares , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestrutura
6.
Cell Rep ; 25(10): 2676-2688.e7, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30517857

RESUMO

Translocation moves the tRNA2⋅mRNA module directionally through the ribosome during the elongation phase of protein synthesis. Although translocation is known to entail large conformational changes within both the ribosome and tRNA substrates, the orchestrated events that ensure the speed and fidelity of this critical aspect of the protein synthesis mechanism have not been fully elucidated. Here, we present three high-resolution structures of intermediates of translocation on the mammalian ribosome where, in contrast to bacteria, ribosomal complexes containing the translocase eEF2 and the complete tRNA2⋅mRNA module are trapped by the non-hydrolyzable GTP analog GMPPNP. Consistent with the observed structures, single-molecule imaging revealed that GTP hydrolysis principally facilitates rate-limiting, final steps of translocation, which are required for factor dissociation and which are differentially regulated in bacterial and mammalian systems by the rates of deacyl-tRNA dissociation from the E site.


Assuntos
Guanosina Trifosfato/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Animais , Bactérias/metabolismo , Guanosina Trifosfato/química , Humanos , Hidrólise , Sítios Internos de Entrada Ribossomal , Mamíferos/metabolismo , Modelos Moleculares , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/metabolismo , Domínios Proteicos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , Ribossomos/química
7.
Open Biol ; 8(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30068566

RESUMO

Among cyclic nucleotide phosphodiesterases (PDEs), PDE6 is unique in serving as an effector enzyme in G protein-coupled signal transduction. In retinal rods and cones, PDE6 is membrane-bound and activated to hydrolyse its substrate, cGMP, by binding of two active G protein α-subunits (Gα*). To investigate the activation mechanism of mammalian rod PDE6, we have collected functional and structural data, and analysed them by reaction-diffusion simulations. Gα* titration of membrane-bound PDE6 reveals a strong functional asymmetry of the enzyme with respect to the affinity of Gα* for its two binding sites on membrane-bound PDE6 and the enzymatic activity of the intermediary 1 : 1 Gα* · PDE6 complex. Employing cGMP and its 8-bromo analogue as substrates, we find that Gα* · PDE6 forms with high affinity but has virtually no cGMP hydrolytic activity. To fully activate PDE6, it takes a second copy of Gα* which binds with lower affinity, forming Gα* · PDE6 · Gα*. Reaction-diffusion simulations show that the functional asymmetry of membrane-bound PDE6 constitutes a coincidence switch and explains the lack of G protein-related noise in visual signal transduction. The high local concentration of Gα* generated by a light-activated rhodopsin molecule efficiently activates PDE6, whereas the low density of spontaneously activated Gα* fails to activate the effector enzyme.


Assuntos
GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transducina/metabolismo , Animais , Sítios de Ligação , Bovinos , Membrana Celular/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Ativação Enzimática , Hidrólise , Ligação Proteica , Transducina/química
8.
Mol Cell ; 70(5): 881-893.e3, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29883607

RESUMO

The assembly of ribosomal subunits is an essential prerequisite for protein biosynthesis in all domains of life. Although biochemical and biophysical approaches have advanced our understanding of ribosome assembly, our mechanistic comprehension of this process is still limited. Here, we perform an in vitro reconstitution of the Escherichia coli 50S ribosomal subunit. Late reconstitution products were subjected to high-resolution cryo-electron microscopy and multiparticle refinement analysis to reconstruct five distinct precursors of the 50S subunit with 4.3-3.8 Å resolution. These assembly intermediates define a progressive maturation pathway culminating in a late assembly particle, whose structure is more than 96% identical to a mature 50S subunit. Our structures monitor the formation and stabilization of structural elements in a nascent particle in unprecedented detail and identify the maturation of the rRNA-based peptidyl transferase center as the final critical step along the 50S assembly pathway.


Assuntos
Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , RNA Ribossômico 23S/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/ultraestrutura , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA Bacteriano/genética , RNA Bacteriano/ultraestrutura , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/ultraestrutura , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Relação Estrutura-Atividade
9.
Nat Microbiol ; 2: 17062, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28452979

RESUMO

λN-mediated processive antitermination constitutes a paradigmatic transcription regulatory event, during which phage protein λN, host factors NusA, NusB, NusE and NusG, and an RNA nut site render elongating RNA polymerase termination-resistant. The structural basis of the process has so far remained elusive. Here we describe a crystal structure of a λN-NusA-NusB-NusE-nut site complex and an electron cryo-microscopic structure of a complete transcription antitermination complex, comprising RNA polymerase, DNA, nut site RNA, all Nus factors and λN, validated by crosslinking/mass spectrometry. Due to intrinsic disorder, λN can act as a multiprotein/RNA interaction hub, which, together with nut site RNA, arranges NusA, NusB and NusE into a triangular complex. This complex docks via the NusA N-terminal domain and the λN C-terminus next to the RNA exit channel on RNA polymerase. Based on the structures, comparative crosslinking analyses and structure-guided mutagenesis, we hypothesize that λN mounts a multipronged strategy to reprogram the transcriptional machinery, which may include (1) the λN C terminus clamping the RNA exit channel, thus stabilizing the DNA:RNA hybrid; (2) repositioning of NusA and RNAP elements, thus redirecting nascent RNA and sequestering the upstream branch of a terminator hairpin; and (3) hindering RNA engagement of termination factor ρ and/or obstructing ρ translocation on the transcript.


Assuntos
Proteínas de Bactérias/química , RNA Polimerases Dirigidas por DNA/química , Proteínas de Ligação a RNA/química , Regiões Terminadoras Genéticas , Transcrição Gênica , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação da Expressão Gênica , RNA/química , Fator Rho , Proteínas Ribossômicas/genética , Fatores de Transcrição/química
10.
Nat Commun ; 7: 13521, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27995908

RESUMO

The surveillance of mRNA translation is imperative for homeostasis. Monitoring the integrity of the message is essential, as the translation of aberrant mRNAs leads to stalling of the translational machinery. During ribosomal rescue, arrested ribosomes are specifically recognized by the conserved eukaryotic proteins Dom34 and Hbs1, to initiate their recycling. Here we solve the structure of Dom34 and Hbs1 bound to a yeast ribosome programmed with a nonstop mRNA at 3.3 Å resolution using cryo-electron microscopy. The structure shows that Domain N of Dom34 is inserted into the upstream mRNA-binding groove via direct stacking interactions with conserved nucleotides of 18S rRNA. It senses the absence of mRNA at the A-site and part of the mRNA entry channel by direct competition. Thus, our analysis establishes the structural foundation for the recognition of aberrantly stalled 80S ribosomes by the Dom34·Hbs1·GTP complex during Dom34-mediated mRNA surveillance pathways.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Endorribonucleases/química , Endorribonucleases/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Microscopia Crioeletrônica , Endorribonucleases/genética , Proteínas de Ligação ao GTP/genética , Guanilil Imidodifosfato/metabolismo , Proteínas de Choque Térmico HSP70/genética , Modelos Moleculares , Fatores de Alongamento de Peptídeos/genética , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Eletricidade Estática
11.
Sci Adv ; 2(3): e1501502, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26973877

RESUMO

Throughout the four phases of protein biosynthesis-initiation, elongation, termination, and recycling-the ribosome is controlled and regulated by at least one specified translational guanosine triphosphatase (trGTPase). Although the structural basis for trGTPase interaction with the ribosome has been solved for the last three steps of translation, the high-resolution structure for the key initiation trGTPase, initiation factor 2 (IF2), complexed with the ribosome, remains elusive. We determine the structure of IF2 complexed with a nonhydrolyzable guanosine triphosphate analog and initiator fMet-tRNAi (Met) in the context of the Escherichia coli ribosome to 3.7-Å resolution using cryo-electron microscopy. The structural analysis reveals previously unseen intrinsic conformational modes of the 70S initiation complex, establishing the mutual interplay of IF2 and initator transfer RNA (tRNA) with the ribsosome and providing the structural foundation for a mechanistic understanding of the final steps of translation initiation.


Assuntos
Fator de Iniciação 2 em Procariotos/química , Ribossomos/química , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica
12.
EMBO J ; 34(24): 3042-58, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26604301

RESUMO

Internal ribosomal entry sites (IRESs) are structured cis-acting RNAs that drive an alternative, cap-independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo-EM reconstructions of the ribosome 80S- and 40S-bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Šfor the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P-site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA-driven translation initiation.


Assuntos
Sítios Internos de Entrada Ribossomal , RNA Viral/química , Subunidades Ribossômicas/química , Sequência de Aminoácidos , Sequência de Bases , Hepatite C/metabolismo , Humanos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ligação Proteica
13.
Methods Enzymol ; 558: 497-514, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26068751

RESUMO

An explosion of new data from high-resolution cryo-electron microscopy (cryo-EM) studies has produced a large number of data sets for many species of ribosomes in various functional states over the past few years. While many methods exist to produce structural models for lower resolution cryo-EM reconstructions, high-resolution reconstructions are often modeled using crystallographic techniques and extensive manual intervention. Here, we present an automated fitting technique for high-resolution cryo-EM data sets that produces all-atom models highly consistent with the EM density. Using a molecular dynamics approach, atomic positions are optimized with a potential that includes the cross-correlation coefficient between the structural model and the cryo-EM electron density, as well as a biasing potential preserving the stereochemistry and secondary structure of the biomolecule. Specifically, we use a hybrid structure-based/ab initio molecular dynamics potential to extend molecular dynamics fitting. In addition, we find that simulated annealing integration, as opposed to straightforward molecular dynamics integration, significantly improves performance. We obtain atomistic models of the human ribosome consistent with high-resolution cryo-EM reconstructions of the human ribosome. Automated methods such as these have the potential to produce atomistic models for a large number of ribosome complexes simultaneously that can be subsequently refined manually.


Assuntos
Simulação de Dinâmica Molecular/estatística & dados numéricos , RNA Ribossômico/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Menores de Eucariotos/química , Microscopia Crioeletrônica , Humanos , Cinética , Conformação de Ácido Nucleico , Conformação Proteica , Termodinâmica
14.
Cell ; 161(4): 845-57, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25957688

RESUMO

Macromolecular machines, such as the ribosome, undergo large-scale conformational changes during their functional cycles. Although their mode of action is often compared to that of mechanical machines, a crucial difference is that, at the molecular dimension, thermodynamic effects dominate functional cycles, with proteins fluctuating stochastically between functional states defined by energetic minima on an energy landscape. Here, we have used cryo-electron microscopy to image ex-vivo-derived human polysomes as a source of actively translating ribosomes. Multiparticle refinement and 3D variability analysis allowed us to visualize a variety of native translation intermediates. Significantly populated states include not only elongation cycle intermediates in pre- and post-translocational states, but also eEF1A-containing decoding and termination/recycling complexes. Focusing on the post-translocational state, we extended this assessment to the single-residue level, uncovering striking details of ribosome-ligand interactions and identifying both static and functionally important dynamic elements.


Assuntos
Biossíntese de Proteínas , Ribossomos/química , Ribossomos/ultraestrutura , Sequência de Aminoácidos , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , RNA de Transferência/química , Alinhamento de Sequência , Termodinâmica
15.
Nat Struct Mol Biol ; 21(8): 721-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25064512

RESUMO

The universally conserved eukaryotic initiation factor (eIF) 5B, a translational GTPase, is essential for canonical translation initiation. It is also required for initiation facilitated by the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) RNA. eIF5B promotes joining of 60S ribosomal subunits to 40S ribosomal subunits bound by initiator tRNA (Met-tRNAi(Met)). However, the exact molecular mechanism by which eIF5B acts has not been established. Here we present cryo-EM reconstructions of the mammalian 80S-HCV-IRES-Met-tRNAi(Met)-eIF5B-GMPPNP complex. We obtained two substates distinguished by the rotational state of the ribosomal subunits and the configuration of initiator tRNA in the peptidyl (P) site. Accordingly, a combination of conformational changes in the 80S ribosome and in initiator tRNA facilitates binding of the Met-tRNAi(Met) to the 60S P site and redefines the role of eIF5B as a tRNA-reorientation factor.


Assuntos
Fatores de Iniciação em Eucariotos/química , Hepacivirus/genética , RNA Viral/química , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/química , Animais , Microscopia Crioeletrônica , Análise de Fourier , Guanilil Imidodifosfato/química , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , RNA de Transferência de Metionina/química , Coelhos
16.
Cell ; 158(1): 121-31, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995983

RESUMO

The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion "subunit rolling." Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection.


Assuntos
Mamíferos/metabolismo , Ribossomos/química , Sequência de Aminoácidos , Animais , Anticódon/metabolismo , Códon/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Elongação Traducional da Cadeia Peptídica , RNA de Transferência/metabolismo , Coelhos , Saccharomyces cerevisiae/metabolismo , Tetrahymena thermophila/metabolismo
17.
Ultramicroscopy ; 140: 9-19, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24562077

RESUMO

In structural electron microscopy, the accurate estimation of the Contrast Transfer Function (CTF) parameters, particularly defocus and astigmatism, is of utmost importance for both initial evaluation of micrograph quality and for subsequent structure determination. Due to increases in the rate of data collection on modern microscopes equipped with new generation cameras, it is also important that the CTF estimation can be done rapidly and with minimal user intervention. Finally, in order to minimize the necessity for manual screening of the micrographs by a user it is necessary to provide an assessment of the errors of fitted parameters values. In this work we introduce CTER, a CTF parameters estimation method distinguished by its computational efficiency. The efficiency of the method makes it suitable for high-throughput EM data collection, and enables the use of a statistical resampling technique, bootstrap, that yields standard deviations of estimated defocus and astigmatism amplitude and angle, thus facilitating the automation of the process of screening out inferior micrograph data. Furthermore, CTER also outputs the spatial frequency limit imposed by reciprocal space aliasing of the discrete form of the CTF and the finite window size. We demonstrate the efficiency and accuracy of CTER using a data set collected on a 300kV Tecnai Polara (FEI) using the K2 Summit DED camera in super-resolution counting mode. Using CTER we obtained a structure of the 80S ribosome whose large subunit had a resolution of 4.03Å without, and 3.85Å with, inclusion of astigmatism parameters.


Assuntos
Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Microscopia Crioeletrônica/estatística & dados numéricos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento Tridimensional/métodos , Imageamento Tridimensional/estatística & dados numéricos , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Software
18.
Proc Natl Acad Sci U S A ; 110(52): 20964-9, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324168

RESUMO

During protein synthesis, coupled translocation of messenger RNAs (mRNA) and transfer RNAs (tRNA) through the ribosome takes place following formation of each peptide bond. The reaction is facilitated by large-scale conformational changes within the ribosomal complex and catalyzed by elongtion factor G (EF-G). Previous structural analysis of the interaction of EF-G with the ribosome used either model complexes containing no tRNA or only a single tRNA, or complexes where EF-G was directly bound to ribosomes in the posttranslocational state. Here, we present a multiparticle cryo-EM reconstruction of a translocation intermediate containing two tRNAs trapped in transit, bound in chimeric intrasubunit ap/P and pe/E hybrid states. The downstream ap/P-tRNA is contacted by domain IV of EF-G and P-site elements within the 30S subunit body, whereas the upstream pe/E-tRNA maintains tight interactions with P-site elements of the swiveled 30S head. Remarkably, a tight compaction of the tRNA pair can be seen in this state. The translocational intermediate presented here represents a previously missing link in understanding the mechanism of translocation, revealing that the ribosome uses two distinct molecular ratchets, involving both intra- and intersubunit rotational movements, to drive the synchronous movement of tRNAs and mRNA.


Assuntos
Modelos Moleculares , Conformação de Ácido Nucleico , Elongação Traducional da Cadeia Peptídica/fisiologia , Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli , Processamento de Imagem Assistida por Computador , RNA de Transferência/metabolismo
19.
Nature ; 485(7399): 526-9, 2012 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-22622583

RESUMO

Bacterial ribosomes stalled at the 3' end of malfunctioning messenger RNAs can be rescued by transfer-messenger RNA (tmRNA)-mediated trans-translation. The SmpB protein forms a complex with the tmRNA, and the transfer-RNA-like domain (TLD) of the tmRNA then enters the A site of the ribosome. Subsequently, the TLD-SmpB module is translocated to the P site, a process that is facilitated by the elongation factor EF-G, and translation is switched to the mRNA-like domain (MLD) of the tmRNA. Accurate loading of the MLD into the mRNA path is an unusual initiation mechanism. Despite various snapshots of different ribosome-tmRNA complexes at low to intermediate resolution, it is unclear how the large, highly structured tmRNA is translocated and how the MLD is loaded. Here we present a cryo-electron microscopy reconstruction of a fusidic-acid-stalled ribosomal 70S-tmRNA-SmpB-EF-G complex (carrying both of the large ligands, that is, EF-G and tmRNA) at 8.3 Å resolution. This post-translocational intermediate (TI(POST)) presents the TLD-SmpB module in an intrasubunit ap/P hybrid site and a tRNA(fMet) in an intrasubunit pe/E hybrid site. Conformational changes in the ribosome and tmRNA occur in the intersubunit space and on the solvent side. The key underlying event is a unique extra-large swivel movement of the 30S head, which is crucial for both tmRNA-SmpB translocation and MLD loading, thereby coupling translocation to MLD loading. This mechanism exemplifies the versatile, dynamic nature of the ribosome, and it shows that the conformational modes of the ribosome that normally drive canonical translation can also be used in a modified form to facilitate more complex tasks in specialized non-canonical pathways.


Assuntos
Escherichia coli/química , Fator G para Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Sequência de Bases , Microscopia Crioeletrônica , Ácido Fusídico/metabolismo , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/ultraestrutura , Ligação Proteica , Conformação Proteica , RNA Bacteriano/genética , RNA Bacteriano/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/ultraestrutura , Subunidades Ribossômicas/química , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Ribossomos/química , Ribossomos/genética , Ribossomos/ultraestrutura
20.
Nature ; 468(7324): 713-6, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21124459

RESUMO

The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A site. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner. Despite the availability of structures of various EF-G-ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within Thermus thermophilus EF-G-ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P site) on the 30S head and simultaneously establishes interaction with the exit site (E site) on the 30S platform, a novel intra-subunit 'pe/E' hybrid state is formed. This state is stabilized by domain IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the 'missing link' in terms of tRNA intermediates involved in the universally conserved translocation process.


Assuntos
Movimento , RNA de Transferência/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia por Raios X , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Modelos Moleculares , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA de Transferência/química , RNA de Transferência/ultraestrutura , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Thermus thermophilus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA