Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Theor Popul Biol ; 156: 130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387801
2.
Biosensors (Basel) ; 13(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37998125

RESUMO

In the modern world with climate changes and increasing pollution, different types of stress are becoming an increasing challenge. Hence, the identification of reliable biomarkers of stress and accessible sensors to measure such biomarkers are attracting increasing attention. In the current study, we demonstrate that the activity, but not the expression, of the ubiquitous enzyme topoisomerase 1 (TOP1), as measured in crude cell extracts by the REEAD sensor system, is markedly reduced in response to thermal stress in both fruit flies (Drosophila melanogaster) and cultivated human cells. This effect was observed in response to both mild-to-moderate long-term heat stress and more severe short-term heat stress in D. melanogaster. In cultivated HeLa cells a reduced TOP1 activity was observed in response to both cold and heat stress. The reduced TOP1 activity appeared dependent on one or more cellular pathways since the activity of purified TOP1 was unaffected by the utilized stress temperatures. We demonstrate successful quantitative measurement of TOP1 activity using an easily accessible chemiluminescence readout for REEAD pointing towards a sensor system suitable for point-of-care assessment of stress responses based on TOP1 as a biomarker.


Assuntos
Drosophila melanogaster , Animais , Humanos , Células HeLa , Biomarcadores
3.
J Insect Physiol ; 143: 104456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36396076

RESUMO

Plastic responses to heat stress have been shown to temporarily increase heat stress tolerance in many small ectotherms. Heat shock proteins (Hsps) have previously been shown to play a role in this induced heat stress tolerance. The heat shock response is fast but short lived, with the cellular Hsp concentration peaking within a few hours after induction. Induced heat stress tolerance, on the other hand, peaks 16-32 h after induction. Therefore, the inducible heat stress response must depend on additional mechanisms. The Turandot gene family has been suggested as a candidate. It contains eight genes that are all upregulated to some degree following heat stress in Drosophila melanogaster. Previously, Turandot A (totA) and Turandot X (totX) have been linked to induced heat stress tolerance. The study presented here aimed to investigate the temporal dynamics of Turandot expression and the functional role of totA and totC for heat stress tolerance. This was done by assaying the temporal heat tolerance and Turandot gene expression after a heat insult, and by exposing Turandot gene knock down flies to a range of heat hardening treatments, and evaluating the effects on heat tolerance. Successful gene knock down was verified by gene expression assays. In addition, expression of hsp70A was included. Both totA, totC, and hsp70A expression increased following a heat hardening treatment, while the results for totX were less clear. The expression of totC temporally co-occurred with and was functionally linked to increased heat tolerance. Expression of totA did not have a significant effect on heat stress tolerance. The complexity of inducible heat tolerance was underlined by the result that knock down of Turandot genes led to increased expression of hsp70. The results suggest that heat tolerance is determined by the interaction between several mechanisms, of which Turandot genes constitute one such mechanism.


Assuntos
Proteínas de Drosophila , Termotolerância , Animais , Drosophila melanogaster/fisiologia , Termotolerância/genética , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta
4.
J Insect Physiol ; 136: 104330, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848182

RESUMO

A dominant perception is that small and motile ectothermic animals must use behavior to avoid exposure to critical or sub-critical temperatures impairing physiological performance. Concomitantly, volunteer exploration of extreme environments by some individuals may promote physiological adjustments and enhance ecological opportunity. Here we introduce to the literature a Thermal Decision System (TDS) which is fully modular, thermally stable, versatile, and adaptable to study navigation through thermal landscapes in insects and other small motile animals. We used a specific setting of the TDS to investigate volunteer navigation through critical cold and hot temperatures in Drosophila melanogaster. We demonstrate that a thermally bold behavior (volunteer crossings through a Critical Temperature Zone, CTZ) characterized a fraction of flies in a sample, and that such a fraction was higher in an outbred population relative to isofemale lines. As set, the TDS generated a thermal gradient within the cold and hot CTZs, and the exploration of this gradient by flies did not relate simply with a tendency to be thermally bold. Mild fasting affected thermal exploration and boldness in complex manners, but thermal boldness was evident in both fasted and fed flies. Also, thermal boldness was not associated with individual critical temperatures. Finally, some flies showed consistent thermal boldness, as flies that performed an extreme thermal cross were more likely to perform a second cross compared with untested flies. We hypothesize that a simple "avoidance principle" is not the only behavioral drive for D. melanogaster facing extreme temperatures over space, and that this pattern may characterize other small motile ectothermic animals with analogous natural history. The physiological correlates, genetic architecture, and interspecific variation of thermal boldness deserve further consideration.


Assuntos
Drosophila melanogaster , Temperatura Alta , Animais , Drosophila , Humanos , Temperatura , Voluntários
5.
Sci Rep ; 11(1): 21710, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741040

RESUMO

Pathogens can modify many aspects of host behavior or physiology with cascading impacts across trophic levels in terrestrial food webs. These changes include thermal tolerance of hosts, however the effects of fungal infections on thermal tolerances and behavioral responses to extreme temperatures (ET) across trophic levels have rarely been studied. We examined how a fungal pathogen, Beauveria bassiana, affects upper and lower thermal tolerance, and behavior of an herbivorous insect, Acyrthosiphon pisum, and its predator beetle, Hippodamia convergens. We compared changes in thermal tolerance limits (CTMin and CTMax), thermal boldness (voluntary exposure to ET), energetic cost (ATP) posed by each response (thermal tolerance and boldness) between healthy insects and insects infected with two fungal loads. Fungal infection reduced CTMax of both aphids and beetles, as well as CTMin of beetles. Fungal infection modified the tendency, or boldness, of aphids and predator beetles to cross either warm or cold ET zones (ETZ). ATP levels increased with pathogen infection in both insect species, and the highest ATP levels were found in individuals that crossed cold ETZ. Fungal infection narrowed the thermal tolerance range and inhibited thermal boldness behaviors to cross ET. As environmental temperatures rise, response to thermal stress will be asymmetric among members of a food web at different trophic levels, which may have implications for predator-prey interactions, food web structures, and species distributions.


Assuntos
Afídeos/microbiologia , Beauveria/fisiologia , Besouros/microbiologia , Interações Hospedeiro-Patógeno , Termotolerância , Animais
6.
Insects ; 12(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34680694

RESUMO

Temperature has profound effects on biochemical processes as suggested by the extensive variation in performance of organisms across temperatures. Nonetheless, the use of fluctuating temperature (FT) regimes in laboratory experiments compared to constant temperature (CT) regimes is still mainly applied in studies of model organisms. We investigated how two amplitudes of developmental temperature fluctuation (22.5/27.5 °C and 20/30 °C, 12/12 h) affected several fitness-related traits in five Drosophila species with markedly different thermal resistance. Egg-to-adult viability did not change much with temperature except in the cold-adapted D. immigrans. Developmental time increased with FT among all species compared to the same mean CT. The impact of FT on wing size was quite diverse among species. Whereas wing size decreased quasi-linearly with CT in all species, there were large qualitative differences with FT. Changes in wing aspect ratio due to FT were large compared to the other traits and presumably a consequence of thermal stress. These results demonstrate that species of the same genus but with different thermal resistance can show substantial differences in responses to fluctuating developmental temperatures not predictable by constant developmental temperatures. Testing multiple traits facilitated the interpretation of responses to FT in a broader context.

7.
Sci Rep ; 11(1): 18850, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552121

RESUMO

Experiments manipulating the nutritional environment and the associated microbiome of animals have demonstrated their importance for key fitness components. However, there is little information on how macronutrient composition and bacterial communities in natural food sources vary across seasons in nature and on how these factors affect the fitness components of insects. In this study, diet samples from an orchard compost heap, which is a natural habitat for many Drosophila species and other arthropods, were collected over 9 months covering all seasons in a temperate climate. We developed D. melanogaster on diet samples and investigated stress resistance and life-history traits as well as the microbial community of flies and compost. Nutrient and microbial community analysis of the diet samples showed marked differences in macronutrient composition and microbial community across seasons. However, except for the duration of development on these diet samples and Critical Thermal maximum, fly stress resistance and life-history traits were unaffected. The resulting differences in the fly microbial community were also more stable and less diverse than the microbial community of the diet samples. Our study suggests that when D. melanogaster are exposed to a vastly varying nutritional environment with a rich, diverse microbial community, the detrimental consequences of an unfavourable macronutrient composition are offset by the complex interactions between microbes and nutrients.


Assuntos
Drosophila melanogaster/fisiologia , Animais , Dieta , Drosophila melanogaster/microbiologia , Ingestão de Alimentos/fisiologia , Microbiologia Ambiental , Microbiota/fisiologia , Nutrientes/provisão & distribuição , Estações do Ano
8.
Mol Biol Evol ; 38(12): 5782-5805, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34469576

RESUMO

Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.


Assuntos
Drosophila melanogaster , Metagenômica , Animais , Drosophila melanogaster/genética , Frequência do Gene , Genética Populacional , Genômica
9.
Virus Evol ; 7(1): veab031, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34408913

RESUMO

Drosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here, we report fourteen DNA viruses detected in a metagenomic analysis of 6668 pool-sequenced Drosophila, sampled from forty-seven European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a double-stranded RNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to twelve segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2 per cent or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D.melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses.

10.
J Insect Physiol ; 132: 104251, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971199

RESUMO

Photoperiod is one of the most reliable seasonal cues that organisms can use to prepare for upcoming environmental changes. Evidence suggests that exposure to different photoperiod can activate plastic responses in stress resistance traits, while there is limited evidence on the plastic response induced by daily progressive cumulative changes in photoperiod. In this study, we assayed the effect of within generation daily uni-directional and cumulative changes in photoperiod on stress resistance and life history traits in four Drosophila species. We predicted that daily increasing photoperiod, mimicking upcoming summer conditions, should lead to an increase in heat resistance and establish trade-offs with other fitness related traits. On the other hand, we predicted that daily decreasing photoperiod should reflect upcoming winter conditions leading to an increase in cold resistance. We found that within genreation changes in photoperiod had a significant effect on life history and stress resistance traits in the four Drosophila species. The observed response was different across species, with D. melanogaster showing five out of six studied traits affected, while in D. mercatorum only one trait was significantly affected. The exposure to changing photoperiod led to an increased upper thermal resistance in D. melanogaster and D. mercatorum and a decreased lower thermal resistance in D. melanogaster and D. simulans, as well as a decreased starvation and desiccation resistance in D. virilis. The developmental time was shorter when flies were exposed to the two photoperiod regimes compared to constant day length control in D. melanogaster and D. simulans. A limited effect was observed on egg-to-adult-viability and desiccation resistance. The results of this study show that daily change in photoperiod induced a plastic response in different traits of drosophilids, suggesting that this environmental parameter needs to be carefully considered in evolutionary studies.


Assuntos
Adaptação Fisiológica , Drosophila/fisiologia , Fotoperíodo , Animais , Evolução Biológica , Drosophila melanogaster/fisiologia , Drosophila simulans/fisiologia , Características de História de Vida , Estações do Ano , Inanição , Estresse Fisiológico , Temperatura
11.
Heredity (Edinb) ; 127(1): 10-20, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33903740

RESUMO

Inbreeding depression (ID) has since long been recognized as a significant factor in evolutionary biology. It is mainly the consequence of (partially) recessive deleterious mutations maintained by mutation-selection balance in large random mating populations. When population size is reduced, recessive alleles are increasingly found in homozygous condition due to drift and inbreeding and become more prone to selection. Particularly at slow rates of drift and inbreeding, selection will be more effective in purging such alleles, thereby reducing the amount of ID. Here we test assumptions of the efficiency of purging in relation to the inbreeding rate and the experimental conditions for four traits in D. melanogaster. We investigated the magnitude of ID for lines that were inbred to a similar level, F ≈ 0.50, reached either by three generations of full-sib mating (fast inbreeding), or by 12 consecutive generations with a small population size (slow inbreeding). This was done on two different food media. We observed significant ID for egg-to-adult viability and heat shock mortality, but only for egg-to-adult viability a significant part of the expressed inbreeding depression was effectively purged under slow inbreeding. For other traits like developmental time and starvation resistance, however, adaptation to the experimental and environmental conditions during inbreeding might affect the likelihood of purging to occur or being detected. We discuss factors that can affect the efficiency of purging and why empirical evidence for purging may be ambiguous.


Assuntos
Depressão por Endogamia , Endogamia , Animais , Evolução Biológica , Drosophila melanogaster/genética , Fenótipo
12.
Front Genet ; 11: 555843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193631

RESUMO

Organisms are exposed to temperatures that vary, for example on diurnal and seasonal time scales. Thus, the ability to behaviorally and/or physiologically respond to variation in temperatures is a fundamental requirement for long-term persistence. Studies on thermal biology in ectotherms are typically performed under constant laboratory conditions, which differ markedly from the variation in temperature across time and space in nature. Here, we investigate evolutionary adaptation and environmentally induced plastic responses of Drosophila simulans to no fluctuations (constant), predictable fluctuations or unpredictable fluctuations in temperature. We whole-genome sequenced populations exposed to 20 generations of experimental evolution under the three thermal regimes and examined the proteome after short-term exposure to the same three regimes. We find that unpredictable fluctuations cause the strongest response at both genome and proteome levels. The loci showing evolutionary responses were generally unique to each thermal regime, but a minor overlap suggests either common laboratory adaptation or that some loci were involved in the adaptation to multiple thermal regimes. The evolutionary response, i.e., loci under selection, did not coincide with induced responses of the proteome. Thus, genes under selection in fluctuating thermal environments are distinct from genes important for the adaptive plastic response observed within a generation. This information is key to obtain a better understanding and prediction of the effects of future increases in both mean and variability of temperatures.

13.
Mol Biol Evol ; 37(9): 2661-2678, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413142

RESUMO

Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.


Assuntos
Drosophila melanogaster/genética , Genoma de Inseto , Variação Estrutural do Genoma , Microbiota , Seleção Genética , Aclimatação/genética , Altitude , Animais , Vírus de DNA , Drosophila melanogaster/virologia , Europa (Continente) , Genoma Mitocondrial , Haplótipos , Vírus de Insetos , Masculino , Filogeografia , Polimorfismo de Nucleotídeo Único
14.
J Insect Physiol ; 118: 103940, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31493390

RESUMO

Insects are known to selectively balance their intake of protein and carbohydrate to optimize reproduction and survival. For insects who feed on decomposing fruit, fluctuations in macronutrient composition occur as fruits ripe and decomposition progresses which may challenge optimal resource allocation. Using Drosophila melanogaster, we tested the effect of macronutrient fluctuations and the variability of these fluctuations on starvation resistance and components of reproductive output; traits known to be sensitive to different protein to carbohydrate (P:C) ratios in the diet. For 8 days, flies were fed the same protein to carbohydrate (P:C) ratio (constant feeding), or fed diets with fluctuations in P:C ratio on each day; these fluctuations being regular (predictably fluctuating) or irregular (unpredictably fluctuating). The three feeding regimes yielded the same average P:C ratio across the duration of the experiment. We found no difference in starvation resistance across the feeding regimes. Interestingly, there was a sexual dimorphism in the effect on reproductive output with males performing worst in the unpredictable feeding regime, and with no effect of feeding regime on female performance. Our study provides evidence for means of adapting to fluctuating macronutrient composition and suggests females are more tactful than males in storing and allocating resources for reproduction.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Dieta , Drosophila melanogaster/fisiologia , Animais , Carboidratos da Dieta , Proteínas Alimentares , Feminino , Fertilidade/fisiologia , Masculino , Fatores Sexuais , Inanição/fisiopatologia
15.
J Therm Biol ; 84: 200-207, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31466754

RESUMO

Heat tolerance increases at higher acclimation temperatures in D. melanogaster, but not in D. subobscura. The two species represent separate lineages of the subgenus Sophophora of Drosophila with contrasting tropical African and temperate Palearctic evolutionary histories. D. melanogaster has five copies of the inducible hsp70 gene distributed in two clusters, named A (with two copies) and B (three copies), while D. subobscura has only two copies arranged similarly to cluster A of D. melanogaster. The hsp70s of the two species also differ in their cis-regulatory regions, with D. melanogaster exhibiting features of a faster and more productive promoter. We predicted that the interspecific variation in acclimation capacity of heat tolerance is explained by evolved variation in expression of the major group of heat shock proteins. To test this prediction, we compared basal levels of gene expression at different developmental temperatures within each of the two species. Furthermore, we explored the heat hardening dynamics by measuring the induction of gene expression during a ramping assay. The prediction of a stronger heat shock protein response in D. melanogaster as compared to D. subobscura was confirmed for both long-term acclimation and short-term hardening. For D. melanogaster the upregulation with temperature ramping ranged from less than two fold (hsp26) to 2500 fold (hsp70A) increase. In all cases induction in D. melanogaster exceeded that of D. subobscura homologs. These differences correlate with structural differences in the regulatory regions of hsp70, and might explain differences in acclimation capacity among species. Finally, in D. melanogaster we found an indication of an inverse relationship between basal and induced levels of hsp70A and hsp83 expression, suggesting a divergent role for thermal adaptation of these genes at benign and stressful temperatures, respectively.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Proteínas de Choque Térmico/genética , Termotolerância/genética , Animais , Feminino , Expressão Gênica , Masculino
16.
Sci Rep ; 9(1): 12305, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444377

RESUMO

Environmental stresses such as extreme temperatures, dehydration and food deprivation may have distinct consequences for different age-classes and for males and females across species. Here we investigate a natural population of the model organism Drosophila melanogaster. Males and females at ages 3, 19 and 35 days were tested for stress resistance; i.e. the ability of flies to cope with starvation and both cold and hot temperatures. Further, we tested a measure of metabolic efficiency, namely mitochondrial DNA copy number (mtDNA CN) in both sexes at all three age-classes. We hypothesize that stress resistance is reduced at old age and more so in males, and that mtDNA CN is a biomarker for sex- and age-dependent reductions in the ability to cope with harsh environments. We show that: (1) males exhibit reduced starvation tolerance at old age, whereas older females are better in coping with periods without food compared to younger females, (2) heat tolerance decreases with increasing age in males but not in females, (3) cold tolerance is reduced at old age in both sexes, and (4) old males have reduced mtDNA CN whereas mtDNA CN slightly increases with age in females. In conclusion, our data provide strong evidence for trait and sex specific consequences of aging with females generally being better at coping with environmental stress at old age. The reduced mtDNA CN in old males suggests reduced metabolic efficiency and this may partly explain why males are less stress tolerant at old age than females. We suggest that mtDNA CN might be a suitable biomarker for physiological robustness. Our findings likely extend to other taxa than Drosophila and therefore we discuss the observations in relation to aging and sex specific lifespan across species.


Assuntos
Envelhecimento/genética , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Drosophila melanogaster/genética , Caracteres Sexuais , Estresse Fisiológico/genética , Animais , Feminino , Análise dos Mínimos Quadrados , Modelos Lineares , Masculino , Inanição
17.
Philos Trans R Soc Lond B Biol Sci ; 374(1778): 20180548, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31203763

RESUMO

The thermal biology of ectotherms is often used to infer species' responses to changes in temperature. It is often proposed that temperate species are more cold-tolerant, less heat-tolerant, more plastic, have broader thermal performance curves (TPCs) and lower optimal temperatures when compared to tropical species. However, relatively little empirical work has provided support for this using large interspecific studies. In the present study, we measure thermal tolerance limits and thermal performance in 22 species of Drosophila that developed under common conditions. Specifically, we measure thermal tolerance (CTmin and CTmax) as well as the fitness components viability, developmental speed and fecundity at seven temperatures to construct TPCs for each of these species. For 10 of the species, we also measure thermal tolerance and thermal performance following developmental acclimation to three additional temperatures. Using these data, we test several fundamental hypotheses about the evolution and plasticity of heat and cold resistance and thermal performance. We find that cold tolerance (CTmin) varied between the species according to the environmental temperature in the habitat from which they originated. These data support the idea that the evolution of cold tolerance has allowed species to persist in colder environments. However, contrary to expectation, we find that optimal temperature ( Topt) and the breadth of thermal performance ( Tbreadth) are similar in temperate, widespread and tropical species and we also find that the plasticity of TPCs was constrained. We suggest that the temperature range for optimal thermal performance is either fixed or under selection by the more similar temperatures that prevail during growing seasons. As a consequence, we find that Topt and Tbreadth are of limited value for predicting past, present and future distributions of species. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.


Assuntos
Evolução Biológica , Drosophila/fisiologia , Aclimatação , Adaptação Fisiológica , Animais , Mudança Climática , Temperatura Baixa , Drosophila/classificação , Drosophila/genética , Ecossistema , Temperatura Alta , Estações do Ano
18.
J Gerontol A Biol Sci Med Sci ; 74(12): 1853-1860, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30874797

RESUMO

Aging is a multifactorial trait caused by early as well as late-life circumstances. A society trend that parents deliberately delay having children is of concern to health professionals, for example as advanced parental age at conception increases disease risk profiles in offspring. We here aim to study if advanced parental age at conception affects mitochondrial DNA content, a cross-species biomarker of general health, in adult human twin offspring and in a model organism. We find no deteriorated mitochondrial DNA content at advanced parental age at conception, but human mitochondrial DNA content was higher in females than males, and the difference was twofold higher at advanced maternal age at conception. Similar parental age effects and sex-specific differences in mitochondrial DNA content were found in Drosophila melanogaster. In addition, parental longevity in humans associates with both mitochondrial DNA content and parental age at conception; thus, we carefully propose that a poorer disease risk profile from advanced parental age at conception might be surpassed by superior effects of parental successful late-life reproduction that associate with parental longevity.


Assuntos
DNA Mitocondrial/genética , Drosophila melanogaster/genética , Longevidade/genética , Pais , Filhos Adultos , Idoso , Animais , Variações do Número de Cópias de DNA , Dinamarca , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
Mol Ecol ; 28(3): 600-614, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30375065

RESUMO

Abiotic environmental factors play a fundamental role in determining the distribution, abundance and adaptive diversification of species. Empowered by new technologies enabling rapid and increasingly accurate examination of genomic variation in populations, researchers may gain new insights into the genomic background of adaptive radiation and stress resistance. We investigated genomic variation across generations of large-scale experimental selection regimes originating from a single founder population of Drosophila melanogaster, diverging in response to ecologically relevant environmental stressors: heat shock, heat knock down, cold shock, desiccation and starvation. When compared to the founder population, and to parallel unselected controls, there were more than 100,000 single nucleotide polymorphisms (SNPs) displaying consistent allelic changes in response to selective pressures across generations. These SNPs were found in both coding and noncoding sequences, with the highest density in promoter regions, and involved a broad range of functionalities, including molecular chaperoning by heat-shock proteins. The SNP patterns were highly stressor-specific despite considerable variation among line replicates within each selection regime, as reflected by a principal component analysis, and co-occurred with selective sweep regions. Only ~15% of SNPs with putatively adaptive changes were shared by at least two selective regimes, while less than 1% of SNPs diverged in opposite directions. Divergent stressors driving evolution in the experimental system of adaptive radiation left distinct genomic signatures, most pronounced in starvation and heat-shock selection regimes.


Assuntos
Drosophila melanogaster/genética , Evolução Molecular , Genética Populacional , Seleção Genética , Alelos , Animais , Elementos de DNA Transponíveis , Genoma de Inseto , Genótipo , Haplótipos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Estresse Fisiológico
20.
J Insect Physiol ; 111: 1-7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30273554

RESUMO

Heat tolerance is commonly assessed as the critical thermal maximum (CTmax) using the dynamic method exposing organisms to a gradually increasing (ramping) temperature until organisms fall into a coma. The CTmax estimate is dependent on the ramping rate, with decreased rates leading to longer treatments and ultimately lower CTmax estimates. There is a current discussion surrounding the physiological dynamics of the effect of the time of exposure by temperature interaction on these estimates. Besides temperature the time of exposure to limited food (starvation), desiccation, and reduced levels of oxygen or increased levels of CO2 may, in interaction with ramping rate, act as confounding factors when assessing upper thermal limits using the dynamic method. Here we test the role of the different potentially confounding factors for assaying thermal tolerance using a ramping assay under four different ramping rates, varying from 0.01 °C/min to 0.2 °C/min. We find that CTmax values are higher at faster ramping rates and that oxygen or CO2 concentration does not show any negative effect on the CTmax values obtained within the experimental pre-treatment period (32 h). Both water (up to 6 h) and food (up to 42 h) deprivation prior to assay showed a negative correlation with thermal tolerance of the flies. For both traits, we found a significant interaction with ramping rate, most likely due to prolonged assays at lower rates. However, as little water was lost during the ramping assay and as food deprivation only modestly affected CTmax values, results were very robust to the conditions experienced during the assay (even at slow rates) and mainly affected by the conditions experienced prior to performing the assay. Thus, for the most commonly applied experimental conditions CTmax estimates are unlikely to be biased or confounded by ramping rate, starvation, desiccation or deteriorating atmospheric composition.


Assuntos
Dessecação , Drosophila melanogaster/fisiologia , Privação de Alimentos , Oxigênio/metabolismo , Termotolerância , Aclimatação , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA