Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 5(3): 385-393, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30623643

RESUMO

Stable isotope probing (SIP) has emerged as a powerful tool to address key questions about microbiota structure and function. To date, diverse isotopically labeled substrates have been used to characterize in situ growth activity of specific bacterial taxa and have revealed the flux of bioavailable substrates through microbial communities associated with health and disease. A major limitation to the growth of the field is the dearth of biologically relevant "heavy" labeled substrates. Mucin glycoproteins, for example, comprise an abundant source of carbon in the gut, oral cavity, respiratory tract, and other mucosal surfaces but are not commercially available. Here, we describe a method to incorporate a 13C-labeled monosaccharide into MUC5AC, a predominant mucin in both gastrointestinal and airway environments. Using the lung adenocarcinoma cell line, Calu-3, polarized cell cultures grown in 13C-labeled d-glucose resulted in liberal mucin production on the apical surface. Mucins were isolated by size-exclusion chromatography, and O-linked glycans were released by ß-elimination, permethylated, and analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) techniques. We demonstrate a 98.7% incorporation of 13C in the heterogeneous O-linked oligosaccharides that make up >80% of mucin dry weight. These "heavy" labeled glycoproteins represent a valuable tool for probing in vivo activity of host-associated bacterial communities and their interactions with the mucosal barrier. The continued expansion of labeled substrates for use in SIP will eventually allow bacterial taxa that degrade host compounds to be identified, with long-term potential for improved health and disease management.


Assuntos
Microbioma Gastrointestinal , Marcação por Isótopo/métodos , Mucina-5AC/química , Oligossacarídeos/química , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Isótopos de Carbono , Trato Gastrointestinal/química , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Glucose/química , Glucose/metabolismo , Humanos , Microbiota , Mucina-5AC/metabolismo , Oligossacarídeos/metabolismo
2.
Environ Sci Technol ; 53(1): 60-68, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30475593

RESUMO

Community-based microbial source tracking (MST) utilizes high-throughput DNA sequencing to profile and compare the microbial communities in different fecal sources and environmental samples. SourceTracker, a program that compares a library of OTUs from fecal sources (i.e., sources) to those in environmental samples (i.e., sinks) in order to determine sources of fecal contamination, is an emerging tool for community-based MST studies. In this study, we investigated the ability of SourceTracker to determine sources of known fecal contamination in spiked, in situ mesocosms containing different source contributors. We also evaluated how SourceTracker results were impacted by accounting for autochthonous taxa present in the sink environment. While SourceTracker was able to predict most sources present in the in situ mesocosms, fecal source library composition substantially influenced the program's ability to predict source contributions. Moreover, prediction results were most reliable when the library contained only known sources, autochthonous taxa were accounted for and when source profiles had low intragroup variability. Although SourceTracker struggled to differentiate between sources with similar bacterial community structures, it was able to consistently identify abundant and expected sources, suggesting that the SourceTracker program can be a useful tool for community-based MST studies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Microbiologia da Água , Monitoramento Ambiental , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA