Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 12: 30-41, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35087961

RESUMO

Twinning-induced plasticity (TWIP) steels are considered excellent materials for manufacturing products requiring extremely high mechanical properties for various applications including thin medical devices, such as biodegradable intravascular stents. It is also proven that the addition of Ag can guarantee an appropriate degradation while implanted in human body without affecting its bioactive properties. In order to develop an optimized manufacturing process for thin stents, the effect of Ag on the recrystallization behavior of TWIP steels needs to be elucidated. This is of major importance since manufacturing stents involves several intermediate recrystallization annealing treatments. In this work, the recrystallization mechanism of two Fe-Mn-C steels with and without Ag was thoroughly investigated by microstructural and mechanical analyses. It was observed that Ag promoted a finer microstructure with a different texture evolution, while the recrystallization kinetics resulted unaffected. The presence of Ag also reduced the effectiveness of the recrystallization treatment. This behavior was attributed to the presence of Ag-rich second phase particles, precipitation of carbides and to the preferential development of grains possessing a {111} orientation upon thermal treatment. The prominence of {111} grains can also give rise to premature twinning, explaining the role of Ag in reducing the ductility of TWIP steels already observed in other works. Furthermore, in vitro biological performances were unaffected by Ag. These findings could allow the design of efficient treatments for supporting the transformation of Fe-Mn-C steels alloyed with Ag into commercial products.

2.
ACS Biomater Sci Eng ; 7(8): 3669-3682, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34269556

RESUMO

Twinning-induced plasticity (TWIP) Fe-Mn-C steels are biodegradable metals with far superior mechanical properties to any biodegradable metal, including Mg alloys, used in commercially available devices. For this reason, the use of Fe-Mn-C alloys to produce thinner and thinner implants can be exploited for overcoming the device size limitations that biodegradable stents still present. However, Fe-Mn steels are known to form a phosphate layer on their surface over long implantation times in animals, preventing device degradation in the required timeframe. The introduction of second phases in such alloys to promote galvanic coupling showed a short-term promise, and particularly the use of Ag looked especially effective. Nonetheless, the evolution of the corrosion mechanism of quaternary Fe-Mn-C-Ag alloys over time is still unknown. This study aims at understanding how corrosion changes over time for a TWIP steel alloyed with Ag using a simple static immersion setup. The presence of Ag promoted some galvanic coupling just in the first week of immersion; this effect was then suppressed by the formation of a mixed carbonate/hydroxide layer. This layer partly detached after 2 months and was replaced by a stable phosphate layer, over which a new carbonate/hydroxide formed after 4 months, effectively hindering the sample degradation. Attachment of phosphates to the surface matches 1-year outcomes from animal tests reported by other authors, but this phenomenon cannot be predicted using immersion up to 28 days. These results demonstrate that immersion tests of Fe-based degradable alloys can be related to animal tests only when they are carried out for a sufficiently long time and that galvanic coupling with Ag is not a viable strategy in the long term. Future works should focus more on surface modifications to control the interfacial behavior rather than alloying in the bulk.


Assuntos
Ligas , Plásticos Biodegradáveis , Animais , Teste de Materiais , Aço , Stents
3.
Acta Biomater ; 98: 103-113, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004841

RESUMO

While Fe-based alloys have already been reported to possess all mechanical properties required for vascular stenting, their relatively low degradation rate in vivo still constitutes their main bottleneck. The inflammatory reaction generated by a stent is inversely proportional to its mass. Therefore, the tendency in stenting is to lower the section so to reduce the inflammatory reaction. Twinning-induced plasticity steels (TWIP) possess excellent mechanical properties for envisaging the next generation of thinner degradable cardiovascular stents. To accelerate the degradation, the addition of noble elements was proposed, aimed at promoting corrosion by galvanic coupling. In this context, silver was reported to generally increase the degradation rate. However, its impact on the deformation mechanism of TWIP steels has not been reported yet. Results show that the use of Ag significantly reduces the ductility without altering the strength of the material. Furthermore, the presence of Ag was found to promote a different deformation texture, thus stimulating the formation of mechanical martensite. Since a stent works in the deformed state, understanding the microstructure and texture resulting from plastic deformation can effectively help to forecast the degradation mechanisms taking place during implantation and the expected degradation time. Moreover, knowing the deformed microstructure allows to understand the formability of very small tubes, as precursors of the next generation of thin section degradable stents. STATEMENT OF SIGNIFICANCE: Commercial degradable magnesium stents are limited from their relatively big structure size. Twinning-induced plasticity steels possess outstanding mechanical properties, but their degradation time goes beyond the timeframe expected from clinics. The inclusion of noble Ag particles, which favor galvanic coupling, is known to promote corrosion and solve this limitation. However, it is necessary to understand the impact that Ag has on the deformation microstructure and on the mechanical properties. The addition of Ag reduces the ductility of a twinning-induced plasticity steel because of a different deformation microstructure. Since a stent works in a deformed state inside an artery, understanding the microstructural evolution after plastic deformation allows to better predict the device performances during service life.


Assuntos
Implantes Absorvíveis , Prata/química , Aço/química , Stents , Ligas/química , Elétrons , Dureza , Estresse Mecânico , Resistência à Tração , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA