Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 2(1): 1-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35392283

RESUMO

Purpose: IDH mutations in low-grade gliomas (LGGs) results in improved survival and DNA hypermethylation compared to IDH wild-type LGGs. IDH-mutant LGGs become hypomethylated during progression. It's uncertain if methylation changes occur during IDH wild-type GBM progression and if the methylome can be reprogrammed. This phase I study evaluated the safety, tolerability, efficacy and methylome changes after L-methylfolate (LMF) treatment, in combination with temozolomide and bevacizumab in patients with recurrent high-grade glioma. Patients and Methods: Fourteen patients total, 13 with GBM, one with anaplastic astrocytoma, all IDH wild-type were enrolled in the study. All patients received LMF at either 15, 30, 60, or 90 mg daily plus temozolomide (75mg/m2 5 days per month) and bevacizumab (10mg/kg every two weeks). Results: No MTD was identified. LMF treated had mOS of 9.5 months (95% CI, 9.1-35.4) comparable to bevacizumab historical control 8.6 months (95% CI, 6.8-10.8). Six patients treated with LMF survived more than 650 days. Across all treatment doses the most adverse events were diarrhea (7%, 1 patient, grade 2), reflux (7%, 1 patient, grade 2), and dysgeusia (7%, 1 patient, grade 2). In the six brains donated at death, there was a 25% increase in DNA methylated CpGs compared to the paired initial tumor. Conclusions: LMF in combination with temozolomide and bevacizumab was well tolerated in patients with recurrent IDH wild-type high-grade glioma. This small study did not establish a superior efficacy with addition of LMF compared to standard bevacizumab therapy, however, this study did show methylome reprogramming in high-grade glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/uso terapêutico , Bevacizumab/efeitos adversos , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , DNA/uso terapêutico
2.
Mol Cancer Ther ; 18(5): 929-936, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30926641

RESUMO

Inhibitors of the bromodomain and extra-terminal domain (BET) family proteins modulate EWS-FLI1 activities in Ewing sarcoma. However, the efficacy of BET inhibitors as a monotherapy was moderate and transient in preclinical models. The objective of this study was to identify the mechanisms mediating intrinsic resistance to BET inhibitors and develop more effective combination treatments for Ewing sarcoma. Using a panel of Ewing sarcoma cell lines and patient-derived xenograft lines (PDX), we demonstrated that IGF1R inhibitors synergistically increased sensitivities to BET inhibitors and induced potent apoptosis when combined with BET inhibitors. Constitutively activated AKT significantly protected Ewing sarcoma cells against BET inhibitors, suggesting that IGF1R regulates responsiveness to BET inhibitors mainly through the PI3K/AKT pathway. Although two Ewing sarcoma cell lines were resistant to IGF1R inhibitors, they retained synergistic response to a combination of BET inhibitors and mTOR inhibitors, suggesting that BET proteins, when IGF1R is not functional, cross-talk with its downstream molecules. Furthermore, the combination of a BET inhibitor and an IGF1R inhibitor induced potent and durable response in xenograft tumors, whereas either agent alone was less effective. Taken together, our results suggest that IGF1R and the downstream PI3K/AKT/mTOR kinase cascade mediate intrinsic resistance to BET inhibitors in Ewing sarcoma. These results provide the proof-of-concept for combining BET inhibitors with agents targeting the IGF1R pathway for treating advanced Ewing sarcoma.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Sarcoma de Ewing/tratamento farmacológico , Fatores de Transcrição/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Proteínas de Fusão Oncogênica/genética , Fosfatidilinositol 3-Quinases/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteína EWS de Ligação a RNA/genética , Receptor IGF Tipo 1/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética
3.
Clin Cancer Res ; 23(8): 2027-2037, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27678457

RESUMO

Purpose: The bromodomain and extra-terminal domain (BET) family proteins are epigenetic readers for acetylated histone marks. Emerging BET bromodomain inhibitors have exhibited antineoplastic activities in a wide range of human cancers through suppression of oncogenic transcription factors, including MYC. However, the preclinical activities of BET inhibitors in advanced solid cancers are moderate at best. To improve BET-targeted therapy, we interrogated mechanisms mediating resistance to BET inhibitors in colorectal cancer.Experimental Design: Using a panel of molecularly defined colorectal cancer cell lines, we examined the impact of BET inhibition on cellular proliferation and survival as well as MYC activity. We further tested the ability of inhibitors targeting the RAF/MEK/ERK (MAPK) pathway to enhance MYC suppression and circumvent intrinsic resistance to BET inhibitors. Key findings were validated using genetic approaches.Results: BET inhibitors as monotherapy moderately reduced colorectal cancer cell proliferation and MYC expression. Blockade of the MAPK pathway synergistically sensitized colorectal cancer cells to BET inhibitors, leading to potent apoptosis and MYC downregulation in vitro and in vivo A combination of JQ1 and trametinib, but neither agent alone, induced significant regression of subcutaneous colorectal cancer xenografts.Conclusions: Our findings suggest that the MAPK pathway confers intrinsic resistance to BET inhibitors in colorectal cancer and propose an effective combination strategy for the treatment of colorectal cancer. Clin Cancer Res; 23(8); 2027-37. ©2016 AACR.


Assuntos
Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Proteínas Nucleares/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncotarget ; 7(28): 43504-43517, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27259270

RESUMO

Ewing sarcoma is driven by characteristic chromosomal translocations between the EWSR1 gene with genes encoding ETS family transcription factors (EWS-ETS), most commonly FLI1. However, direct pharmacological inhibition of transcription factors like EWS-FLI1 remains largely unsuccessful. Active gene transcription requires orchestrated actions of many epigenetic regulators, such as the bromodomain and extra-terminal domain (BET) family proteins. Emerging BET bromodomain inhibitors have exhibited promising antineoplastic activities via suppression of oncogenic transcription factors in various cancers. We reasoned that EWS-FLI1-mediated transcription activation might be susceptible to BET inhibition. In this study, we demonstrated that small molecule BET bromodomain inhibitors repressed EWS-FLI1-driven gene signatures and downregulated important target genes. However, expression of EWS-FLI1 was not significantly affected. Repression of autocrine IGF1 by BET inhibitors led to significant inhibition of the IGF1R/AKT pathway critical to Ewing sarcoma cell proliferation and survival. Consistently, BET inhibitors impaired viability and clonogenic survival of Ewing sarcoma cell lines and blocked EWS-FLI1-induced transformation of mouse NIH3T3 fibroblast cells. Selective depletion of individual BET genes partially phenocopied the actions of BET inhibitors. Finally, the prototypical BET inhibitor, JQ1, significantly repressed Ewing sarcoma xenograft tumor growth. These findings suggest therapeutic potential of BET inhibitors in Ewing sarcoma and highlight an emerging paradigm of using epigenetic agents to treat cancers driven by fusion transcription factors.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas/antagonistas & inibidores , Proteína Proto-Oncogênica c-fli-1/antagonistas & inibidores , Proteína EWS de Ligação a RNA/antagonistas & inibidores , Sarcoma de Ewing/tratamento farmacológico , Triazóis/farmacologia , Animais , Antineoplásicos/uso terapêutico , Comunicação Autócrina/efeitos dos fármacos , Azepinas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Células NIH 3T3 , Proteínas de Fusão Oncogênica/genética , Proteínas/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína EWS de Ligação a RNA/genética , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Triazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
5.
EMBO Rep ; 16(3): 379-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25600116

RESUMO

Germ cells give rise to all cell lineages in the next-generation and are responsible for the continuity of life. In a variety of organisms, germ cells and stem cells contain large ribonucleoprotein granules. Although these particles were discovered more than 100 years ago, their assembly and functions are not well understood. Here we report that glycolytic enzymes are components of these granules in Drosophila germ cells and both their mRNAs and the enzymes themselves are enriched in germ cells. We show that these enzymes are specifically required for germ cell development and that they protect their genomes from transposable elements, providing the first link between metabolism and transposon silencing. We further demonstrate that in the granules, glycolytic enzymes associate with the evolutionarily conserved Tudor protein. Our biochemical and single-particle EM structural analyses of purified Tudor show a flexible molecule and suggest a mechanism for the recruitment of glycolytic enzymes to the granules. Our data indicate that germ cells, similarly to stem cells and tumor cells, might prefer to produce energy through the glycolytic pathway, thus linking a particular metabolism to pluripotency.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Elementos de DNA Transponíveis/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Células Germinativas/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Drosophila/fisiologia , Glicólise , MicroRNAs/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
6.
J Vis Exp ; (86)2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24797807

RESUMO

Many cellular processes are controlled by multisubunit protein complexes. Frequently these complexes form transiently and require native environment to assemble. Therefore, to identify these functional protein complexes, it is important to stabilize them in vivo before cell lysis and subsequent purification. Here we describe a method used to isolate large bona fide protein complexes from Drosophila embryos. This method is based on embryo permeabilization and stabilization of the complexes inside the embryos by in vivo crosslinking using a low concentration of formaldehyde, which can easily cross the cell membrane. Subsequently, the protein complex of interest is immunopurified followed by gel purification and analyzed by mass spectrometry. We illustrate this method using purification of a Tudor protein complex, which is essential for germline development. Tudor is a large protein, which contains multiple Tudor domains--small modules that interact with methylated arginines or lysines of target proteins. This method can be adapted for isolation of native protein complexes from different organisms and tissues.


Assuntos
Reagentes de Ligações Cruzadas/química , Proteínas de Drosophila/isolamento & purificação , Drosophila/química , Drosophila/embriologia , Animais , Centrifugação/métodos , Embrião não Mamífero/química , Imunoprecipitação/métodos
7.
Arch Environ Contam Toxicol ; 61(1): 68-73, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21221962

RESUMO

Bisphenol A (BPA) is used in the production of polycarbonate plastics and epoxy resins, which are used in many consumer products. Sources of human exposures to BPA include packaged and canned food products, indoor air, and dust ingestion. Information on the relative contributions of the pathways to BPA exposures is limited. In this study, we measured concentrations BPA in indoor dust collected from two locations in the Eastern United States and evaluated the contribution of dust to total BPA exposures. BPA was found in 95% of the dust samples analyzed (n = 56) at concentrations ranging from <0.5 to 10,200 ng/g (mean 843; median 422). The median values for BPA intake by way of the ingestion of dust by adults and toddlers were calculated to be 0.35 and 5.63 ng/kg body weight/day. These estimated exposure doses of BPA through dust ingestion are of the same order of magnitude as the recently reported low concentrations that induced health effects in laboratory animal studies. The contribution of dust to total human BPA intake was estimated to be <1%, however, suggesting that dietary intake is the predominant source of exposures in humans.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Fenóis/análise , Adulto , Compostos Benzidrílicos , Criança , Monitoramento Ambiental , Habitação , Humanos , Kentucky , New York
8.
Biochem Biophys Res Commun ; 402(2): 384-9, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20946872

RESUMO

Germ cells give rise to the next generation and contain ribonucleoprotein particles, germ granules. In these granules, Piwi protein Aubergine has been shown to interact with Tudor protein in Drosophila. Tudor protein has 11 Tudor domains and it has been unclear to what extent all these domains are involved in the interaction with Aubergine. Here we present direct biochemical evidence that Tudor-Aubergine interaction surface is composed of different Tudor domains including those that have not been previously implicated in Aubergine recognition. Furthermore, we show that specific single Tudor domains determine localization of Tudor complex to different sites in ovarian germ cells. Our data suggest that multiple Tudor domains of germline proteins from various species are redundantly used for interaction with the same protein partner during germline development.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Oogênese , Fatores de Iniciação de Peptídeos/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Feminino , Proteínas de Membrana Transportadoras/genética , Mutação , Fatores de Iniciação de Peptídeos/genética , Domínios e Motivos de Interação entre Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA