Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Biotechnol ; 41(6): 731-735, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36669948

RESUMO

The need for effective hair loss treatments has fostered research and the emergence of several biotechnology companies. Pharmacological approaches, although competitive, have been surpassed by cell-based therapies, which remain clinically immature. But are the current efforts enough for the hairy goal, or will additional strategies be required?


Assuntos
Alopecia , Cabelo , Humanos , Alopecia/tratamento farmacológico , Biotecnologia , Terapia Baseada em Transplante de Células e Tecidos , Comércio
3.
Stem Cells Transl Med ; 11(10): 1021-1028, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35962707

RESUMO

Different animal models have been used for hair research and regeneration studies based on the similarities between animal and human skins. Primary knowledge on hair follicle (HF) biology has arisen from research using mouse models baring spontaneous or genetically engineered mutations. These studies have been crucial for the discovery of genes underlying human hair cycle control and hair loss disorders. Yet, researchers have become increasingly aware that there are distinct architectural and cellular features between the mouse and human HFs, which might limit the translation of findings in the mouse models. Thus, it is enticing to reason that the spotlight on mouse models and the unwillingness to adapt to the human archetype have been hampering the emergence of the long-awaited human hair loss cure. Here, we provide an overview of the major limitations of the mainstream mouse models for human hair loss research, and we underpin a future course of action using human cell bioengineered models and the emergent artificial intelligence.


Assuntos
Inteligência Artificial , Cabelo , Humanos , Camundongos , Animais , Folículo Piloso , Alopecia , Modelos Animais de Doenças
4.
Nat Aging ; 2(5): 397-411, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-37118067

RESUMO

The FOXM1 transcription factor exhibits pleiotropic C-terminal transcriptional and N-terminal non-transcriptional functions in various biological processes critical for cellular homeostasis. We previously found that FOXM1 repression during cellular aging underlies the senescence phenotypes, which were vastly restored by overexpressing transcriptionally active FOXM1. Yet, it remains unknown whether increased expression of FOXM1 can delay organismal aging. Here, we show that in vivo cyclic induction of an N-terminal truncated FOXM1 transgene on progeroid and naturally aged mice offsets aging-associated repression of full-length endogenous Foxm1, reinstating both transcriptional and non-transcriptional functions. This translated into mitigation of several cellular aging hallmarks, as well as molecular and histopathological progeroid features of the short-lived Hutchison-Gilford progeria mouse model, significantly extending its lifespan. FOXM1 transgene induction also reinstated endogenous Foxm1 levels in naturally aged mice, delaying aging phenotypes while extending their lifespan. Thus, we disclose that FOXM1 genetic rewiring can delay senescence-associated progeroid and natural aging pathologies.


Assuntos
Envelhecimento , Fatores de Transcrição , Animais , Camundongos , Envelhecimento/genética , Senescência Celular/genética , Regulação da Expressão Gênica , Fenótipo , Fatores de Transcrição/genética
5.
Cells ; 10(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070077

RESUMO

foxm1 is a master regulator of the cell cycle, contributing to cell proliferation. Recent data have shown that this transcription factor also modulates gene networks associated with other cellular mechanisms, suggesting non-proliferative functions that remain largely unexplored. In this study, we used CRISPR/Cas9 to disrupt foxm1 in the zebrafish terminally differentiated fast-twitching muscle cells. foxm1 genomic disruption increased myofiber death and clearance. Interestingly, this contributed to non-autonomous satellite cell activation and proliferation. Moreover, we observed that Cas9 expression alone was strongly deleterious to muscle cells. Our report shows that foxm1 modulates a muscle non-autonomous response to myofiber death and highlights underreported toxicity to high expression of Cas9 in vivo.


Assuntos
Proteína Forkhead Box M1/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Morte Celular , Diferenciação Celular , Proliferação de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteína Forkhead Box M1/genética , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Músculo Esquelético/patologia , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Cell Death Dis ; 12(6): 542, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035233

RESUMO

Inhibition of spindle microtubule (MT) dynamics has been effectively used in cancer treatment. Although the mechanisms by which MT poisons elicit mitotic arrest are fairly understood, efforts are still needed towards elucidating how cancer cells respond to antimitotic drugs owing to cytotoxicity and resistance side effects. Here, we identified the critical G2/M transcription factor Forkhead box M1 (FOXM1) as a molecular determinant of cell response to antimitotics. We found FOXM1 repression to increase death in mitosis (DiM) due to upregulation of the BCL-2 modifying factor (BMF) gene involved in anoikis, an apoptotic process induced upon cell detachment from the extracellular matrix. FOXM1 binds to a BMF intronic cis-regulatory element that interacts with both the BMF and the neighbor gene BUB1B promoter regions, to oppositely regulate their expression. This mechanism ensures that cells treated with antimitotics repress BMF and avoid DiM when FOXM1 levels are high. In addition, we show that this mechanism is partly disrupted in anoikis/antimitotics-resistant tumor cells, with resistance correlating with lower BMF expression but in a FOXM1-independent manner. These findings provide a stratification biomarker for antimitotic chemotherapy response.


Assuntos
Antimitóticos/farmacologia , Morte Celular , Proteína Forkhead Box M1/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Células Cultivadas , Criança , Regulação para Baixo/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Masculino , Mitose/efeitos dos fármacos , Mitose/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
7.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915734

RESUMO

MicroRNAs have been demonstrated as key regulators of gene expression in the etiology of a range of diseases including Alzheimer's disease (AD). Recently, we identified miR-483-5p as the most upregulated miRNA amongst a panel of miRNAs in blood plasma specific to prodromal, early-stage Alzheimer's disease patients. Here, we investigated the functional role of miR-483-5p in AD pathology. Using TargetScan and miRTarBase, we identified the microtubule-associated protein MAPT, often referred to as TAU, and the extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), known to phosphorylate TAU, as predicted direct targets of miR-483-5p. Employing several functional assays, we found that miR-483-5p regulates ERK1 and ERK2 at both mRNA and protein levels, resulting in lower levels of phosphorylated forms of both kinases. Moreover, miR-483-5p-mediated repression of ERK1/2 resulted in reduced phosphorylation of TAU protein at epitopes associated with TAU neurofibrillary pathology in AD. These results indicate that upregulation of miR-483-5p can decrease phosphorylation of TAU via ERK pathway, representing a compensatory neuroprotective mechanism in AD pathology. This miR-483-5p/ERK1/TAU axis thus represents a novel target for intervention in AD.


Assuntos
Doença de Alzheimer/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MicroRNAs/metabolismo , Proteínas tau/metabolismo , Biomarcadores/metabolismo , Células HEK293 , Humanos , Emaranhados Neurofibrilares/metabolismo , Fosforilação
8.
Chromosome Res ; 29(2): 159-173, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33587225

RESUMO

CLASPs are key modulators of microtubule dynamics throughout the cell cycle. During mitosis, CLASPs independently associate with growing microtubule plus-ends and kinetochores and play essential roles in chromosome segregation. In a proteomic survey for human CLASP1-interacting proteins during mitosis, we have previously identified SOGA1 and SOGA2/MTCL1, whose mitotic roles remained uncharacterized. Here we performed an initial functional characterization of human SOGA1 and SOGA2/MTCL1 during mitosis. Using specific polyclonal antibodies raised against SOGA proteins, we confirmed their expression and reciprocal interaction with CLASP1 and CLASP2 during mitosis. In addition, we found that both SOGA1 and SOGA2/MTCL1 are phospho-regulated during mitosis by CDK1. Immunofluorescence analysis revealed that SOGA2/MTCL1 co-localizes with mitotic spindle microtubules and spindle poles throughout mitosis and both SOGA proteins are enriched at the midbody during mitotic exit/cytokinesis. GFP-tagging of SOGA2/MTCL1 further revealed a microtubule-independent localization at kinetochores. Live-cell imaging after siRNA-mediated knockdown of SOGA1 and SOGA2/MTCL1 showed that they are independently required for distinct aspects of chromosome segregation. Thus, SOGA1 and SOGA2/MTCL1 are bona fide CLASP-interacting proteins during mitosis required for faithful chromosome segregation in human cells.


Assuntos
Segregação de Cromossomos , Proteômica , Humanos , Cinetocoros , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Fuso Acromático
9.
EMBO Rep ; 21(5): e49248, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32134180

RESUMO

Chromosomal instability (CIN) refers to the rate at which cells are unable to properly segregate whole chromosomes, leading to aneuploidy. Besides its prevalence in cancer cells and postulated implications in promoting tumorigenesis, studies in aneuploidy-prone mouse models uncovered an unanticipated link between CIN and aging. Using young to old-aged human dermal fibroblasts, we observed a dysfunction of the mitotic machinery arising with age that mildly perturbs chromosome segregation fidelity and contributes to the generation of fully senescent cells. Here, we investigated mitotic mechanisms that contribute to age-associated CIN. We found that elderly cells have an increased number of stable kinetochore-microtubule (k-MT) attachments and decreased efficiency in the correction of improper k-MT interactions. Chromosome mis-segregation rates in old-aged cells decreased upon both genetic and small-molecule enhancement of MT-depolymerizing kinesin-13 activity. Notably, restored chromosome segregation accuracy inhibited the phenotypes of cellular senescence. Therefore, we provide mechanistic insight into age-associated CIN and disclose a strategy for the use of a small-molecule to inhibit age-associated CIN and to delay the cellular hallmarks of aging.


Assuntos
Instabilidade Cromossômica , Segregação de Cromossomos , Envelhecimento/genética , Senescência Celular/genética , Humanos , Microtúbulos
10.
Stem Cells Transl Med ; 9(3): 342-350, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31876379

RESUMO

The demand for an efficient therapy for alopecia disease has fueled the hair research field in recent decades. However, despite significant improvements in the knowledge of key processes of hair follicle biology such as genesis and cycling, translation into hair follicle replacement therapies has not occurred. Great expectation has been recently put on hair follicle bioengineering, which is based on the development of fully functional hair follicles with cycling activity from an expanded population of hair-inductive (trichogenic) cells. Most bioengineering approaches focus on in vitro reconstruction of folliculogenesis by manipulating key regulatory molecular/physical features of hair follicle growth/cycling in vivo. Despite their great potential, no cell-based product is clinically available for hair regeneration therapy to date. This is mainly due to demanding issues that still hinder the functionality of cultured human hair cells. The present review comprehensively compares emergent strategies using different cell sources and tissue engineering approaches, aiming to successfully achieve a clinical cure for hair loss. The hurdles of these strategies are discussed, as well as the future directions to overcome the obstacles and fulfill the promise of a "hairy" feat.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Regeneração/fisiologia , Engenharia Tecidual/métodos , Animais , Humanos
11.
Cell Cycle ; 18(20): 2713-2726, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31455186

RESUMO

The cytoskeleton protein α-fodrin plays a major role in maintaining structural stability of membranes. It was also identified as part of the brain γ-tubulin ring complex, the major microtubule nucleator. Here, we investigated the requirement of α-fodrin for microtubule spindle assembly during mitotic progression. We found that α-fodrin depletion results in abnormal mitosis with uncongressed chromosomes, leading to prolonged activation of the spindle assembly checkpoint and a severe mitotic delay. Further, α-fodrin repression led to the formation of shortened spindles with unstable kinetochore-microtubule attachments. We also found that the mitotic kinesin CENP-E had reduced levels at kinetochores to likely account for the chromosome misalignment defects in α-fodrin-depleted cells. Importantly, we showed these cells to exhibit reduced levels of detyrosinated α-tubulin, which primarily drives CENP-E localization. Since proper microtubule dynamics and chromosome alignment are required for completion of normal mitosis, this study reveals an unforeseen role of α-fodrin in regulating mitotic progression. Future studies on these lines of observations should reveal important mechanistic insight for fodrin's involvement in cancer.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Mitose/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Humanos , Cinetocoros/metabolismo , Proteínas dos Microfilamentos/genética , RNA Interferente Pequeno , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo
12.
Mech Ageing Dev ; 182: 111118, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31102604

RESUMO

Aging refers to the progressive deterioration of tissue and organ function over time. Increasing evidence points to the accumulation of highly damaged cell cycle-arrested cells with age (cellular senescence) as major reason for the development of certain aging-associated diseases. Recent studies have independently shown that aneuploidy, an abnormal chromosome set, occurs in senescent cells, and that the accumulation of cytoplasmic DNA driven by faulty chromosome segregation during mitosis aids in the establishment of senescence and its associated secretory phenotype known as SASP. Here we review the emerging link between chromosomal instability (CIN) and senescence in the context of aging, with emphasis on the cGAS-STING pathway activation and its role in the development of the SASP. Based on current evidence, we propose that age-associated CIN in mitotically active cells contributes to aging and its associated diseases, and we discuss the inhibition of CIN as a potential strategy to prevent the generation of aneuploid senescent cells and thereby to delay aging.


Assuntos
Envelhecimento , Aneuploidia , Senescência Celular , Instabilidade Cromossômica/imunologia , Cromossomos Humanos , Transdução de Sinais , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/patologia , Senescência Celular/genética , Senescência Celular/imunologia , Cromossomos Humanos/genética , Cromossomos Humanos/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
13.
Mol Cancer Ther ; 18(7): 1217-1229, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31040162

RESUMO

The oncogenic transcription factor FOXM1 has been previously shown to play a critical role in carcinogenesis by inducing cellular proliferation in multiple cancer types. A small-molecule compound, Robert Costa Memorial drug-1 (RCM-1), has been recently identified from high-throughput screen as an inhibitor of FOXM1 in vitro and in mouse model of allergen-mediated lung inflammation. In the present study, we examined antitumor activities of RCM-1 using tumor models. Treatment with RCM-1 inhibited tumor cell proliferation as evidenced by increased cell-cycle duration. Confocal imaging of RCM-1-treated tumor cells indicated that delay in cellular proliferation was concordant with inhibition of FOXM1 nuclear localization in these cells. RCM-1 reduced the formation and growth of tumor cell colonies in the colony formation assay. In animal models, RCM-1 treatment inhibited growth of mouse rhabdomyosarcoma Rd76-9, melanoma B16-F10, and human H2122 lung adenocarcinoma. RCM-1 decreased FOXM1 protein in the tumors, reduced tumor cell proliferation, and increased tumor cell apoptosis. RCM-1 decreased protein levels and nuclear localization of ß-catenin, and inhibited protein-protein interaction between ß-catenin and FOXM1 in cultured tumor cells and in vivo Altogether, our study provides important evidence of antitumor potential of the small-molecule compound RCM-1, suggesting that RCM-1 can be a promising candidate for anticancer therapy.


Assuntos
Proteína Forkhead Box M1/genética , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Transfecção , beta Catenina/genética
14.
Mol Cell Biol ; 39(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988155

RESUMO

The nucleolus is a subnuclear compartment with key roles in rRNA synthesis and ribosome biogenesis, complex processes that require hundreds of proteins and factors. Alterations in nucleolar morphology and protein content have been linked to the control of cell proliferation and stress responses and, recently, further implicated in cell senescence and ageing. In this study, we report the functional role of NOL12 in the nucleolar homeostasis of human primary fibroblasts. NOL12 repression induces specific changes in nucleolar morphology, with increased nucleolar area but reduced nucleolar number, along with nucleolar accumulation and increased levels of fibrillarin and nucleolin. Moreover, NOL12 repression leads to stabilization and activation of p53 in an RPL11-dependent manner, which arrests cells at G2 phase and ultimately leads to senescence. Importantly, we found NOL12 repression in association with nucleolar stress-like responses in human fibroblasts from elderly donors, disclosing it as a biomarker in human chronological aging.


Assuntos
Envelhecimento/metabolismo , Nucléolo Celular/metabolismo , Fibroblastos/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Envelhecimento/genética , Pontos de Checagem do Ciclo Celular , Nucléolo Celular/genética , Células Cultivadas , Senescência Celular , Regulação para Baixo , Fibroblastos/metabolismo , Homeostase , Humanos , Masculino , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo
15.
Dermatol Surg ; 45(12): 1649-1659, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30865019

RESUMO

BACKGROUND: Appropriate storage of human hair follicle (HF) grafts during follicular unit excision (FUE) is crucial toward successful hair shaft implantation. Several commercial storage solutions are currently used to ensure ex vivo maintenance of follicular grafts viability and trichogenicity. However, quantitative experimental evidence demonstrating molecular changes in HF cells associated with the usage of different storage solutions is largely missing. OBJECTIVE: To identify gene expression changes in HF cells caused by ex vivo storage of hair grafts in different preservation conditions. METHODS: The authors performed gene expression analysis in dermal papilla (DP) isolated from HF stored under different temperatures and solutions. The expression signature of key genes controlling hair growth and cycling, apoptosis, inflammation, and senescence was assessed for (1) chilled versus room temperature (RT) and (2) DP cell medium, saline, Hypothermosol, platelet-rich plasma, and ATPv-supplemented saline. RESULTS: The authors found chilled versus RT to prevent inflammatory cytokine signaling. Under chilled conditions, ATPv-supplemented saline was the best condition to preserve the expression of the trichogenic genes HEY1 and LEF1. CONCLUSION: Data disclose DP gene expression analysis as a useful methodology to ascertain the efficacy of preserving solutions and elucidate about the best currently available option for FUE clinical practice.


Assuntos
Células-Tronco Adultas/metabolismo , Alopecia/terapia , Folículo Piloso/crescimento & desenvolvimento , Soluções para Preservação de Órgãos/farmacologia , Organogênese/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Adolescente , Adulto , Células-Tronco Adultas/efeitos dos fármacos , Aloenxertos/efeitos dos fármacos , Aloenxertos/crescimento & desenvolvimento , Aloenxertos/transplante , Apoptose/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/transplante , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Masculino , Pessoa de Meia-Idade , Soluções para Preservação de Órgãos/química , Temperatura , Coleta de Tecidos e Órgãos/métodos , Adulto Jovem
16.
Int J Mol Sci ; 20(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795536

RESUMO

Mainstream approaches that are currently used as anti-aging therapies primarily explore the senescence and epigenetic drift aging hallmarks and they are at two ends of the spectrum. While senolytic therapies include either the selective elimination of senescent cells or the disruption of their secretome with the use of drugs or natural compounds, cellular reprogramming uses genetic manipulation to revert cells all the way back to pluripotency. Here, we describe the progress that has been made on these therapies, while highlighting the major challenges involved. Moreover, based on recent findings elucidating the impact of mitotic shutdown and aneuploidy in cellular senescence, we discuss the modulation of mitotic competence as an alternative strategy to delay the hallmarks of aging. We propose that a regulated rise in mitotic competence of cells could circumvent certain limitations that are present in the senolytic and reprogramming approaches, by acting to decelerate senescence and possibly restore the epigenetic landscape.


Assuntos
Reprogramação Celular , Longevidade/genética , Mitose , Animais , Senescência Celular/genética , Epigênese Genética , Terapia Genética/métodos , Humanos
17.
Invest New Drugs ; 37(5): 1044-1051, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30680583

RESUMO

Obtustatin, isolated from the Levantine Viper snake venom (Macrovipera lebetina obtusa -MLO), is the shortest known monomeric disintegrin shown to specifically inhibit the binding of the α1ß1 integrin to collagen IV. Its oncostatic effect is due to the inhibition of angiogenesis, likely through α1ß1 integrin inhibition in endothelial cells. To explore the therapeutic potential of obtustatin, we studied its effect in S-180 sarcoma-bearing mice model in vivo as well as in human dermal microvascular endothelial cells (HMVEC-D) in vitro, and tested anti-angiogenic activity in vivo using the chick embryo chorioallantoic membrane assay (CAM assay). Our in vivo results show that obtustatin inhibits tumour growth by 33%. The expression of vascular endothelial growth factor (VEGF) increased after treatment with obtustatin, but the level of expression of caspase 8 did not change. In addition, our results demonstrate that obtustatin inhibits FGF2-induced angiogenesis in the CAM assay. Our in vitro results show that obtustatin does not exhibit cytotoxic activity in HMVEC-D cells in comparison to in vivo results. Thus, our findings disclose that obtustatin might be a potential candidate for the treatment of sarcoma in vivo with low toxicity.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Sarcoma Experimental/tratamento farmacológico , Venenos de Víboras/farmacologia , Animais , Apoptose , Proliferação de Células , Embrião de Galinha , Membrana Corioalantoide , Integrina alfa1beta1/antagonistas & inibidores , Camundongos , Neovascularização Patológica/patologia , Sarcoma Experimental/irrigação sanguínea , Sarcoma Experimental/patologia , Células Tumorais Cultivadas
18.
Nat Commun ; 9(1): 2834, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026603

RESUMO

Aneuploidy, an abnormal chromosome number, has been linked to aging and age-associated diseases, but the underlying molecular mechanisms remain unknown. Here we show, through direct live-cell imaging of young, middle-aged, and old-aged primary human dermal fibroblasts, that aneuploidy increases with aging due to general dysfunction of the mitotic machinery. Increased chromosome mis-segregation in elderly mitotic cells correlates with an early senescence-associated secretory phenotype (SASP) and repression of Forkhead box M1 (FoxM1), the transcription factor that drives G2/M gene expression. FoxM1 induction in elderly and Hutchison-Gilford progeria syndrome fibroblasts prevents aneuploidy and, importantly, ameliorates cellular aging phenotypes. Moreover, we show that senescent fibroblasts isolated from elderly donors' cultures are often aneuploid, and that aneuploidy is a key trigger into full senescence phenotypes. Based on this feedback loop between cellular aging and aneuploidy, we propose modulation of mitotic efficiency through FoxM1 as a potential strategy against aging and progeria syndromes.


Assuntos
Envelhecimento/genética , Aneuploidia , Fibroblastos/metabolismo , Proteína Forkhead Box M1/genética , Mitose , Progéria/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Senescência Celular/genética , Criança , Pré-Escolar , Fibroblastos/citologia , Proteína Forkhead Box M1/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Progéria/etnologia , Progéria/metabolismo , Progéria/patologia , População Branca
19.
Adv Exp Med Biol ; 1002: 153-188, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28600786

RESUMO

Aging is a biological process characterized by the progressive deterioration of physiological functions known to be the main risk factor for chronic diseases and declining health. There has been an emerging connection between aging and aneuploidy, an aberrant number of chromosomes, even though the molecular mechanisms behind age-associated aneuploidy remain largely unknown. In recent years, several genetic pathways and biochemical processes controlling the rate of aging have been identified and proposed as aging hallmarks. Primary hallmarks that cause the accumulation of cellular damage include genomic instability, telomere attrition, epigenetic alterations and loss of proteostasis (López-Otín et al., Cell 153:1194-1217, 2013). Here we review the provocative link between these aging hallmarks and the loss of chromosome segregation fidelity during cell division, which could support the correlation between aging and aneuploidy seen over the past decades. Secondly, we review the systemic impacts of aneuploidy in cell physiology and emphasize how these include some of the primary hallmarks of aging. Based on the evidence, we propose a mutual causality between aging and aneuploidy, and suggest modulation of mitotic fidelity as a potential means to ameliorate healthy lifespan.


Assuntos
Envelhecimento/patologia , Senescência Celular , Mitose , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Aneuploidia , Animais , Segregação de Cromossomos , Epigênese Genética , Instabilidade Genômica , Genótipo , Humanos , Fenótipo , Encurtamento do Telômero
20.
Sci Rep ; 6: 22828, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26956415

RESUMO

An abnormal chromosome number, a condition known as aneuploidy, is a ubiquitous feature of cancer cells. A number of studies have shown that aneuploidy impairs cellular fitness. However, there is also evidence that aneuploidy can arise in response to specific challenges and can confer a selective advantage under certain environmental stresses. Cancer cells are likely exposed to a number of challenging conditions arising within the tumor microenvironment. To investigate whether aneuploidy may confer a selective advantage to cancer cells, we employed a controlled experimental system. We used the diploid, colorectal cancer cell line DLD1 and two DLD1-derived cell lines carrying single-chromosome aneuploidies to assess a number of cancer cell properties. Such properties, which included rates of proliferation and apoptosis, anchorage-independent growth, and invasiveness, were assessed both under standard culture conditions and under conditions of stress (i.e., serum starvation, drug treatment, hypoxia). Similar experiments were performed in diploid vs. aneuploid non-transformed human primary cells. Overall, our data show that aneuploidy can confer selective advantage to human cells cultured under non-standard conditions. These findings indicate that aneuploidy can increase the adaptability of cells, even those, such as cancer cells, that are already characterized by increased proliferative capacity and aggressive tumorigenic phenotypes.


Assuntos
Proliferação de Células , Células Epiteliais/fisiologia , Trissomia , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA