Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 44(3): 35, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742250

RESUMO

Understanding the evaporation of a multi-component droplet has found immense importance in various technological applications. This study investigates the evaporation behaviour of a colloidal binary droplet system comprising of the ethanol-water mixture and polystyrene nanoparticles. The wetting and evaporation dynamics were studied with an emphasis on the collective influence of ethanol and nanoparticle concentrations. The temporal behaviour of the contact angles, shapes and volumes of the droplets was monitored in order to analyse the evaporative behaviour. With increase of ethanol concentrations, the binary droplet volumes were found to decrease nonlinearly with time. Ethanol being more volatile evaporated in the initial stage. Towards the end of the evaporation process, the evaporation characteristics mimics the behaviour of pure water. Our study shows that the initial contact angle decreases monotonically with increased concentration of ethanol in the mixture. The contact angle is maximum for a particular nanoparticle concentration. Droplets with higher ethanol concentration show higher wettability which in its turn is maximum for low nanoparticle concentrations. This trend shows the interconnected effect of ethanol and nanoparticle concentrations on evaporation. Rim width of the final deposition pattern increases with nanoparticle concentration although it is almost independent of ethanol concentration. Finally, it is noticed that fast evaporation of a relatively more volatile component in a binary mixture droplet leads to nanoparticle segregation for low nanoparticle concentrations. Thus for binary mixtures, the evaporation of the more volatile component, ethanol for our case, offers characteristic differences in the resulting evaporation dynamics from that of pure water which finds applicability for multi-component evaporation processes.

2.
Langmuir ; 34(43): 12751-12758, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30299962

RESUMO

This work investigates the role of surface parameters such as the nanoscale roughness, topography, and skewness of smooth and rough Si surfaces in the shape of patterns left by evaporating colloidal droplets of spherical polystyrene particles. The droplet contact angle, colloidal deposition pattern, crack density, and rim growth velocities are experimentally evaluated for varying roughness. The contact angle and rim growth rate are found to be more for rough surfaces in comparison to smooth ones. Roughness also helps in reducing stress in the drying droplets, thereby impeding the process of crack formation as exemplified by the experimental results. The altered Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions emerging from the contribution of nanoscale roughness are theoretically evaluated for each differently rough substrate-particle combination. The forces have been calculated by considering large- and small-scale roughness parameters of the experimental surfaces. The experimental findings have been duly corroborated by theoretical estimates. Finally, it is observed that the skewness of the surface and the small-scale asperity radius bear a correlation with the DLVO forces and subsequently with the ring deposit pattern. The present understanding of the influence of surface fluctuations on evaporative self-assembly would enable one to choose the right topographic surface for particular applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA