Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Database (Oxford) ; 20232023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37847816

RESUMO

With the rapidly growing amount of biological data, powerful but also flexible data management and visualization systems are of increasingly crucial importance. The COVID-19 pandemic has more than highlighted this need and the challenges scientists are facing. Here, we provide an example and a step-by-step template for non-IT personnel to easily implement an intuitive, interactive data management solution to manage and visualize the high influx of biological samples and associated metadata in a laboratory setting. Our approach is illustrated with the genomic surveillance for SARS-CoV-2 in Germany, covering over 11 600 internal and 130 000 external samples from multiple datasets. We compare three data management options used in laboratories: (i) simple, yet error-prone and inefficient spreadsheets, (ii) complex and long-to-implement laboratory information management systems and (iii) high-performance database management systems. We highlight the advantages and pitfalls of each option and outline why a document-oriented NoSQL option via MongoDB Atlas can be a suitable solution for many labs. Our example can be treated as a template and easily adapted to allow scientists to focus on their core work and not on complex data administration.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , Genômica , Sistemas de Gerenciamento de Base de Dados
3.
Front Genet ; 12: 711437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394197

RESUMO

In response to the SARS-CoV-2 pandemic, a highly increased sequencing effort has been established worldwide to track and trace ongoing viral evolution. Technologies, such as nanopore sequencing via the ARTIC protocol are used to reliably generate genomes from raw sequencing data as a crucial base for molecular surveillance. However, for many labs that perform SARS-CoV-2 sequencing, bioinformatics is still a major bottleneck, especially if hundreds of samples need to be processed in a recurring fashion. Pipelines developed for short-read data cannot be applied to nanopore data. Therefore, specific long-read tools and parameter settings need to be orchestrated to enable accurate genotyping and robust reference-based genome reconstruction of SARS-CoV-2 genomes from nanopore data. Here we present poreCov, a highly parallel workflow written in Nextflow, using containers to wrap all the tools necessary for a routine SARS-CoV-2 sequencing lab into one program. The ease of installation, combined with concise summary reports that clearly highlight all relevant information, enables rapid and reliable analysis of hundreds of SARS-CoV-2 raw sequence data sets or genomes. poreCov is freely available on GitHub under the GNUv3 license: github.com/replikation/poreCov.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA